تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Braid Group
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
6-6-2021
2466
Braid Group
Consider strings, each oriented vertically from a lower to an upper "bar." If this is the least number of strings needed to make a closed braid representation of a link,
is called the braid index. A general
-braid is constructed by iteratively applying the
(
) operator, which switches the lower endpoints of the
th and
th strings--keeping the upper endpoints fixed--with the
th string brought above the
th string. If the
th string passes below the
th string, it is denoted
.
The operations and
on
strings define a group known as the braid group or Artin braid group, denoted
.
Topological equivalence for different representations of a braid word and
is guaranteed by the conditions
(1) |
as first proved by E. Artin.
Any -braid can be expressed as a braid word, e.g.,
is a braid word in the braid group
. When the opposite ends of the braids are connected by nonintersecting lines, knots (or links) may formed that can be labeled by their corresponding braid word. The Burau representation gives a matrix representation of the braid groups.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 132-133, 1994.
Birman, J. S. "Braids, Links, and the Mapping Class Groups." Ann. Math. Studies, No. 82. Princeton, NJ: Princeton University Press, 1976.
Birman, J. S. "Recent Developments in Braid and Link Theory." Math. Intell. 13, 52-60, 1991.
Christy, J. "Braids." http://library.wolfram.com/infocenter/MathSource/813/.
Jones, V. F. R. "Hecke Algebra Representations of Braid Groups and Link Polynomials." Ann. Math. 126, 335-388, 1987.
Murasugi, K. and Kurpita, B. I. A Study of Braids. Dordrecht, Netherlands: Kluwer, 1999.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
