Read More
Date: 4-7-2021
![]()
Date: 13-5-2021
![]()
Date: 20-5-2021
![]() |
A sheaf is a presheaf with "something" added allowing us to define things locally. This task is forbidden for presheaves in general. Specifically, a presheaf on a topological space
is a sheaf if it satisfies the following conditions:
1. if is an open set, if
is an open covering of
and if
is an element such that
for all
, then
.
2. if is an open set, if
is an open covering of
and if we have elements
for each
, with the property that for each,
,
, then there is an element
such that
for all
.
The first condition implies that is unique.
For example, let be a variety over a field
. If
denotes the ring of regular functions from
to
then with the usual restrictions
is a sheaf which is called the sheaf of regular functions on
.
In the same way, one can define the sheaf of continuous real-valued functions on any topological space, and also for differentiable functions.
REFERENCES:
Godement, R. Topologie Algébrique et Théorie des Faisceaux. Paris: Hermann, 1958.
Hartshorne, R. Algebraic Geometry. New York: Springer-Verlag, 1977.
Iyanaga, S. and Kawada, Y. (Eds.). "Sheaves." §377 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1171-1174, 1980.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|