Read More
Date: 6-6-2021
2113
Date: 25-6-2017
1758
Date: 23-5-2021
2085
|
Two topological spaces and are homotopy equivalent if there exist continuous maps and , such that the composition is homotopic to the identity on , and such that is homotopic to . Each of the maps and is called a homotopy equivalence, and is said to be a homotopy inverse to (and vice versa).
One should think of homotopy equivalent spaces as spaces, which can be deformed continuously into one another.
Certainly any homeomorphism is a homotopy equivalence, with homotopy inverse , but the converse does not necessarily hold.
Some spaces, such as any ball , can be deformed continuously into a point. A space with this property is said to be contractible, the precise definition being that is homotopy equivalent to a point. It is a fact that a space is contractible, if and only if the identity map is null-homotopic, i.e., homotopic to a constant map.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|