تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fundamental Group
المؤلف:
Hatcher, A
المصدر:
Algebraic Topology. Cambridge, England: Cambridge University Press, 2006.
الجزء والصفحة:
...
10-5-2021
2432
Fundamental Group
The fundamental group of an arcwise-connected set is the group formed by the sets of equivalence classes of the set of all loops, i.e., paths with initial and final points at a given basepoint
, under the equivalence relation of homotopy. The identity element of this group is the set of all paths homotopic to the degenerate path consisting of the point
. The fundamental groups of homeomorphic spaces are isomorphic. In fact, the fundamental group only depends on the homotopy type of
. The fundamental group of a topological space was introduced by Poincaré (Munkres 1993, p. 1).
The following is a table of the fundamental group for some common spaces , where
denotes the fundamental group,
is the first integral homology group,
denotes the group direct product,
denotes the free product,
denotes the ring of integers, and
is the cyclic group of order
.
space (![]() |
symbol | ![]() |
![]() |
circle | ![]() |
![]() |
![]() |
complex projective space | ![]() |
0 | 0 |
figure eight | ![]() |
![]() |
|
Klein bottle | ![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
real projective plane | ![]() |
![]() |
![]() |
sphere | ![]() |
0 | 0 |
The group product of loop
and loop
is given by the path of
followed by the path of
. The identity element is represented by the constant path, and the inverse of
is given by traversing
in the opposite direction. The fundamental group is independent of the choice of basepoint because any loop through
is homotopic to a loop through any other point
. So it makes sense to say the "fundamental group of
."
The diagram above shows that a loop followed by the opposite loop is homotopic to the constant loop, i.e., the identity. That is, it starts by traversing the path , and then turns around and goes the other way,
. The composition is deformed, or homotoped, to the constant path, along the original path
.
A space with a trivial fundamental group (i.e., every loop is homotopic to the constant loop), is called simply connected. For instance, any contractible space, like Euclidean space, is simply connected. The sphere is simply connected, but not contractible. By definition, the universal cover is simply connected, and loops in
lift to paths in
. The lifted paths in the universal cover define the deck transformations, which form a group isomorphic to the fundamental group.
The underlying set of the fundamental group of is the set of based homotopy classes from the circle to
, denoted
. For general spaces
and
, there is no natural group structure on
, but when there is,
is called a co-H-space. Besides the circle, every sphere
is a co-H-space, defining the homotopy groups. In general, the fundamental group is non-Abelian. However, the higher homotopy groups are Abelian. In some special cases, the fundamental group is Abelian. For example, the animation above shows that
in the torus. The red path goes before the blue path. The animation is a homotopy between the loop that goes around the inside first and the loop that goes around the outside first.
Since the first integral homology of
is also represented by loops, which are the only one-dimensional objects with no boundary, there is a group homomorphism
![]() |
which is surjective. In fact, the group kernel of is the commutator subgroup and
is called Abelianization.
The fundamental group of can be computed using van Kampen's theorem, when
can be written as a union
of spaces whose fundamental groups are known.
When is a continuous map, then the fundamental group pushes forward. That is, there is a map
defined by taking the image of loops from
. The pushforward map is natural, i.e.,
whenever the composition of two maps is defined.
REFERENCES:
Hatcher, A. Algebraic Topology. Cambridge, England: Cambridge University Press, 2006.
Munkres, J. R. Elements of Algebraic Topology. New York: Perseus Books Pub., 1993.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
