 
					
					
						Giuga Number					
				 
				
					
						 المؤلف:  
						Sloane, N. J. A.
						 المؤلف:  
						Sloane, N. J. A.					
					
						 المصدر:  
						 Sequence A007850 in "The On-Line Encyclopedia of Integer Sequences."
						 المصدر:  
						 Sequence A007850 in "The On-Line Encyclopedia of Integer Sequences."					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 16-1-2021
						16-1-2021
					
					
						 1132
						1132					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Giuga Number
Any composite number  with
 with  for all prime divisors
 for all prime divisors  of
 of  .
.  is a Giuga number iff
 is a Giuga number iff
	
		
			|  | (1) | 
	
where  is the totient function and iff
 is the totient function and iff
	
		
			|  | (2) | 
	
 is a Giuga number iff
 is a Giuga number iff
	
		
			|  | (3) | 
	
where  is a Bernoulli number and
 is a Bernoulli number and  is the totient function. Every counterexample to Giuga's conjecture is a contradiction to Agoh's conjecture and vice versa. The smallest known Giuga numbers are 30 (3 factors), 858, 1722 (4 factors), 66198 (5 factors), 2214408306, 24423128562 (6 factors), 432749205173838, 14737133470010574, 550843391309130318 (7 factors),
 is the totient function. Every counterexample to Giuga's conjecture is a contradiction to Agoh's conjecture and vice versa. The smallest known Giuga numbers are 30 (3 factors), 858, 1722 (4 factors), 66198 (5 factors), 2214408306, 24423128562 (6 factors), 432749205173838, 14737133470010574, 550843391309130318 (7 factors),
244197000982499715087866346, 554079914617070801288578559178
(8 factors), ... (OEIS A007850).
It is not known if there are an infinite number of Giuga numbers. All the above numbers have sum minus product equal to 1, and any Giuga number of higher order must have at least 59 factors. The smallest odd Giuga number must have at least nine prime factors.
REFERENCES:
Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn, R. "Giuga's Conjecture on Primality." Amer. Math. Monthly 103, 40-50, 1996.
Butske, W.; Jaje, L. M.; and Mayernik, D. R. "The Equation  , Pseudoperfect Numbers, and Partially Weighted Graphs." Math. Comput. 69, 407-420, 1999.
, Pseudoperfect Numbers, and Partially Weighted Graphs." Math. Comput. 69, 407-420, 1999.
Kellner, B. C. Über irreguläre Paare höherer Ordnungen. Diplomarbeit. Göttingen, Germany: Mathematischen Institut der Georg August Universität zu Göttingen, 2002. https://www.bernoulli.org/~bk/irrpairord.pdf.
Kellner, B. C. "The Equivalence of Giuga's and Agoh's Conjectures." Preprint. 10 July 2003. https://www.bernoulli.org/~bk/equivalence.pdf.
Sloane, N. J. A. Sequence A007850 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة