Read More
Date: 21-1-2021
667
Date: 23-9-2020
1890
Date: 17-8-2020
566
|
A number is called -hyperperfect if
(1) |
|||
(2) |
where is the divisor function and the summation is over the proper divisors with . Rearranging gives
(3) |
Taking gives the usual perfect numbers.
If is an odd integer, and and are prime, then is -hyperperfect. McCranie (2000) conjectures that all -hyperperfect numbers for odd are in fact of this form. Similarly, if and are distinct odd primes such that for some integer , then is -hyperperfect. Finally, if and is prime, then if is prime for some < then is -hyperperfect (McCranie 2000).
The first few hyperperfect numbers (excluding perfect numbers) are 21, 301, 325, 697, 1333, ... (OEIS A007592). If perfect numbers are included, the first few are 6, 21, 28, 301, 325, 496, ... (OEIS A034897), whose corresponding values of are 1, 2, 1, 6, 3, 1, 12, ... (OEIS A034898). The following table gives the first few -hyperperfect numbers for small values of . McCranie (2000) has tabulated all hyperperfect numbers less than .
OEIS | -hyperperfect number | |
1 | A000396 | 6 ,28, 496, 8128, ... |
2 | A007593 | 21, 2133, 19521, 176661, ... |
3 | 325, ... | |
4 | 1950625, 1220640625, ... | |
6 | A028499 | 301, 16513, 60110701, ... |
10 | 159841, ... | |
11 | 10693, ... | |
12 | A028500 | 697, 2041, 1570153, 62722153, ... |
REFERENCES:
Guy, R. K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." §B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-53, 1994.
McCranie, J. S. "A Study of Hyperperfect Numbers." J. Integer Sequences 3, No. 00.1.3, 2000. https://www.math.uwaterloo.ca/JIS/VOL3/VOL3/mccranie.
Minoli, D. "Issues in Nonlinear Hyperperfect Numbers." Math. Comput. 34, 639-645, 1980.
Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., p. 177, 1992.
Sloane, N. J. A. Sequences A000396/M4186, A007592/M5113, A007593/M5121, A028499, A028500, A034897, and A034898 in "The On-Line Encyclopedia of Integer Sequences."
te Riele, H. J. J. "Hyperperfect Numbers with Three Different Prime Factors." Math. Comput. 36, 297-298, 1981.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|