المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
احكام الاسارى
2024-11-24
الخرشوف Artichoke (من الزراعة الى الحصاد)
2024-11-24
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24

تنفيذ اللقطات- متابعة الأغراض المتحركة
23/9/2022
الرحمة الإلهية
11-7-2017
Cyclic GMP
29-12-2015
المنهج العقليّ في تفسير القرآن
2024-09-18
الدلائل العقليّة على المعاد
6-4-2016
تاريخ الزراعة العضوية
2024-06-13

Lucas Chain  
  
868   03:51 مساءً   date: 1-11-2020
Author : Kutz, M.
Book or Source : "Lower Bounds for Lucas Chains." SIAM J. Comput. 31
Page and Part : ...


Read More
Date: 16-10-2019 670
Date: 26-11-2020 884
Date: 17-1-2021 716

Lucas Chain

A Lucas chain for an integer n>=1 is an increasing sequence

 1=a_0<a_1<a_2<...<a_r=n

of integers such that every a_kk>=1, can be written as a sum a_k=a_i+a_j of smaller elements whose difference |a_j-a_i| is also en element of the sequence or zero (i.e., taking i=j is allowed). The number r is called the length of the chain.

For example, 1,2,3,5 is a Lucas chain of length 3 for 5 because 2=1+11-1=03=1+22-1=15=3+2, and 3-2=1. Further examples are sequences of consecutive powers of 2 or the Fibonacci numbers 1, 2, 3, 5, 8, 13, 21, ....

Lucas chains are a special kind of addition chain and can be used to evaluate Lucas functions, which have been proposed for use in public-key cryptography.


REFERENCES:

Kutz, M. "Lower Bounds for Lucas Chains." SIAM J. Comput. 31, 1896-1908, 2002.

Montgomery, P. L. "Evaluating Recurrences of Form X_(m+n)=f(X_m,X_n,X_(m-n)) via Lucas Chains." Unpublished manuscript. ftp://ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz.

Yen, S.-M. and Laih, C.-S. "Fast Algorithms for LUC Digital Signature Computation." IEE Proc.--Computers and Digital Techn. 142, 165-169, Mar. 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.