Read More
Date: 17-3-2020
![]()
Date: 16-5-2020
![]()
Date: 11-3-2020
![]() |
Any nonzero rational number can be represented by
![]() |
(1) |
where is a prime number,
and
are integers not divisible by
, and
is a unique integer. The p-adic norm of
is then defined by
![]() |
(2) |
Also define the -adic value
![]() |
(3) |
As an example, consider the fraction
![]() |
(4) |
It has -adic absolute values given by
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
The -adic norm of a nonzero rational number
can be computed in the Wolfram Language as follows.
PadicNorm[x_Integer, p_Integer?PrimeQ] :=
p^(-IntegerExponent[x, p])
PadicNorm[x_Rational, p_Integer?PrimeQ] :=
PadicNorm[Numerator[x], p] /
PadicNorm[Denominator[x], p]
The -adic norm satisfies the relations
1. for all
,
2. iff
,
3. for all
and
,
4. for all
and
(the triangle inequality), and
5. for all
and
(the strong triangle inequality).
In the above, relation 4 follows trivially from relation 5, but relations 4 and 5 are relevant in the more general valuation theory.
The p-adic norm is the basis for the algebra of p-adic numbers.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|