المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
أنـواع اتـجاهـات المـستهـلك
2024-11-28
المحرر العلمي
2024-11-28
المحرر في الصحافة المتخصصة
2024-11-28
مـراحل تكويـن اتجاهات المـستهـلك
2024-11-28
عوامـل تكويـن اتـجاهات المـستهـلك
2024-11-28
وسـائـل قـيـاس اتـجاهـات المستهلـك
2024-11-28

العين المبصرة ونور الشمس شرطان ضروريان بالنسبة للنظر
21-10-2014
معنى كلمة قول‌
14-12-2015
ترتيب تصاعدي Ascending Order
3-11-2015
أكاروس النخيل (الغبيرة) Oligonychus afrasiaticus
21-12-2015
الاندلس بعد الفتح
22-11-2016
الخلية العصبية في الحيوان
3-2-2022

Bertrand,s Postulate  
  
1327   05:57 مساءً   date: 30-9-2020
Author : Aigner, M. and Ziegler, G. M
Book or Source : Proofs from the Book, 2nd ed. New York: Springer-Verlag, 2000.
Page and Part : ...


Read More
Date: 10-2-2020 1182
Date: 1-12-2020 608
Date: 1-12-2020 624

Bertrand's Postulate

Bertrand's postulate, also called the Bertrand-Chebyshev theorem or Chebyshev's theorem, states that if n>3, there is always at least one prime p between n and 2n-2. Equivalently, if n>1, then there is always at least one prime p such that n<p<2n. The conjecture was first made by Bertrand in 1845 (Bertrand 1845; Nagell 1951, p. 67; Havil 2003, p. 25). It was proved in 1850 by Chebyshev (Chebyshev 1854; Havil 2003, p. 25; Derbyshire 2004, p. 124) using non-elementary methods, and is therefore sometimes known as Chebyshev's theorem. The first elementary proof was by Ramanujan, and later improved by a 19-year-old Erdős in 1932.

A short verse about Bertrand's postulate states, "Chebyshev said it, but I'll say it again; There's always a prime between n and 2n." While commonly attributed to Erdős or to some other Hungarian mathematician upon Erdős's youthful re-proof the theorem (Hoffman 1998), the quote is actually due to N. J. Fine (Schechter 1998).

An extension of this result is that if n>k, then there is a number containing a prime divisor >k in the sequence nn+1, ..., n+k-1. (The case n=k+1 then corresponds to Bertrand's postulate.) This was first proved by Sylvester, independently by Schur, and a simple proof was given by Erdős (1934; Hoffman 1998, p. 37)

The numbers of primes between n and 2n-2 for n=1, 2, ... are 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, ... (OEIS A077463), while the numbers of primes between n and 2n are 0, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, ... (OEIS A060715). For n=1, 2, ..., the values of NP(n), where NP(n) is the next prime function are 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, ... (OEIS A007918).

After his proof of Bertrand's postulate, Ramanujan (1919) proved the generalization that pi(x)-pi(x/2)>=1, 2, 3, 4, 5, ... if x>=2, 11, 17, 29, 41, ... (OEIS A104272), respectively, where pi(x) is the prime counting function. The numbers are sometimes known as Ramanujan primes. The case pi(x)-pi(x/2)>=1 for all x>=2 is Bertrand's postulate.

A related problem is to find the least value of theta so that there exists at least one prime between n and n+O(n^theta) for sufficiently large n (Berndt 1994). The smallest known value is theta=6/11+epsilon (Lou and Yao 1992).


REFERENCES:

Aigner, M. and Ziegler, G. M. Proofs from the Book, 2nd ed. New York: Springer-Verlag, 2000.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 135, 1994.

Bertrand, J. "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme." J. l'École Roy. Polytech. 17, 123-140, 1845.

Chebyshev, P. "Mémoire sur les nombres premiers." Mém. Acad. Sci. St. Pétersbourg 7, 17-33, (1850) 1854. Reprinted as §1-7 in Œuvres de P. L. Tschebychef, Tome I. St. Pétersbourg, Russia: Commissionaires de l'Academie Impériale des Sciences, pp. 51-64, 1899.

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.

Dickson, L. E. "Bertrand's Postulate." History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 435-436, 2005.

Erdős, P. "Ramanujan and I." In Proceedings of the International Ramanujan Centenary Conference held at Anna University, Madras, Dec. 21, 1987. (Ed. K. Alladi). New York: Springer-Verlag, pp. 1-20, 1989.

Erdős, P. "A Theorem of Sylvester and Schur." J. London Math. Soc. 9, 282-288, 1934.

Hardy, G. H. and Wright, E. M. "Bertrand's Postulate and a 'Formula' for Primes." §22.3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 343-345 and 373, 1979.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.

Lou, S. and Yau, Q. "A Chebyshev's Type of Prime Number Theorem in a Short Interval (II)." Hardy-Ramanujan J. 15, 1-33, 1992.

Nagell, T. Introduction to Number Theory. New York: Wiley, p. 70, 1951.

Ramanujan, S. "A Proof of Bertrand's Postulate." J. Indian Math. Soc. 11, 181-182, 1919.

Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., pp. 208-209, 2000.

Schechter, B. My Brain is Open: The Mathematical Journeys of Paul Erdős. New York: Simon and Schuster, 1998.

Séroul, R. Programming for Mathematicians. Berlin: Springer-Verlag, pp. 7-8, 2000.

Sloane, N. J. A. Sequences A007918, A060715, A077463, and A104272 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.