Primitive Prime Factor
المؤلف:
Sloane, N. J. A.
المصدر:
Sequence A005529/M1505 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
16-9-2020
1207
Primitive Prime Factor
Given an integer sequence
{a_n}_(n=1)^infty" src="https://mathworld.wolfram.com/images/equations/PrimitivePrimeFactor/Inline1.gif" style="height:17px; width:42px" />, a prime number
is said to be a primitive prime factor of the term
if
divides
but does not divide any
for
. It is possible for a term
to have zero, one, or many primitive prime factors.
For example, the prime factors of the sequence
{k^2+1}_(k=1)^(10)" src="https://mathworld.wolfram.com/images/equations/PrimitivePrimeFactor/Inline9.gif" style="height:22px; width:64px" /> are summarized in the following table (OEIS A005529).
 |
 |
prime factorization |
prime factors |
primitive prime factors |
1 |
2 |
2 |
2 |
2 |
2 |
5 |
5 |
5 |
5 |
3 |
10 |
 |
2, 5 |
 |
4 |
17 |
17 |
17 |
17 |
5 |
26 |
 |
2, 13 |
13 |
6 |
37 |
37 |
37 |
37 |
7 |
50 |
 |
2, 5 |
 |
8 |
65 |
 |
5, 13 |
 |
9 |
82 |
 |
2, 41 |
41 |
10 |
101 |
101 |
101 |
101 |
REFERENCES:
Sloane, N. J. A. Sequence A005529/M1505 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة