تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Pollard rho Factorization Method
المؤلف:
Brent, R.
المصدر:
"An Improved Monte Carlo Factorization Algorithm." Nordisk Tidskrift for Informationsbehandlung (BIT) 20
الجزء والصفحة:
...
14-9-2020
1428
Pollard rho Factorization Method
A prime factorization algorithm also known as Pollard Monte Carlo factorization method. There are two aspects to the Pollard factorization method. The first is the idea of iterating a formula until it falls into a cycle. Let
, where
is the number to be factored and
and
are its unknown prime factors. Iterating the formula
![]() |
(1) |
or almost any polynomial formula (an exception being ) for any initial value
will produce a sequence of number that eventually fall into a cycle. The expected time until the
s become cyclic and the expected length of the cycle are both proportional to
.
However, since with
and
relatively prime, the Chinese remainder theorem guarantees that each value of
(mod
) corresponds uniquely to the pair of values (
),
). Furthermore, the sequence of
s follows exactly the same formula modulo
and
, i.e.,
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Therefore, the sequence (mod ) will fall into a much shorter cycle of length on the order of
. It can be directly verified that two values
and
have the same value (mod
), by computing
![]() |
(4) |
which is equal to .
The second part of Pollard's method concerns detection of the fact that a sequence has become periodic. Pollard's suggestion was to use the idea attributed to Floyd of comparing to
for all
. A different method is used in Brent's factorization method.
Under worst conditions, the Pollard algorithm can be very slow.
REFERENCES:
Brent, R. "An Improved Monte Carlo Factorization Algorithm." Nordisk Tidskrift for Informationsbehandlung (BIT) 20, 176-184, 1980.
Brent, R. P. "Some Integer Factorization Algorithms Using Elliptic Curves." Austral. Comp. Sci. Comm. 8, 149-163, 1986.
Bressoud, D. M. Factorization and Primality Testing. New York: Springer-Verlag, pp. 61-67, 1989.
Eldershaw, C. and Brent, R. P. "Factorization of Large Integers on Some Vector and Parallel Computers."
Montgomery, P. L. "Speeding the Pollard and Elliptic Curve Methods of Factorization." Math. Comput. 48, 243-264, 1987.
Pollard, J. M. "A Monte Carlo Method for Factorization." Nordisk Tidskrift for Informationsbehandlung (BIT) 15, 331-334, 1975.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 83 and 102-103, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
