Read More
Date: 9-12-2020
2139
Date: 25-12-2019
684
Date: 26-7-2020
795
|
The first Hardy-Littlewood conjecture is called the k-tuple conjecture. It states that the asymptotic number of prime constellations can be computed explicitly. A particular case gives the so-called strong twin prime conjecture
The second Hardy-Littlewood conjecture states that
for all , where is the prime counting function.
The following table summarizes the first few values of for integer and , 2, .... The values of this function are plotted above.
OEIS | for , 2, ... | |
1 | A080545 | 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ... |
2 | A090405 | 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, ... |
3 | A090406 | 2, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, ... |
Although it is not obvious, Richards (1974) proved that the first and second conjectures are incompatible with each other.
REFERENCES:
Guy, R. K. §A9 in Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.
Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 1-70, 1923.
Richards, I. "On the Incompatibility of Two Conjectures Concerning Primes." Bull. Amer. Math. Soc. 80, 419-438, 1974.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 61-62 and 68-69, 1994.
Sloane, N. J. A. Sequences A080545, A090405, A090406, in "The On-Line Encyclopedia of Integer Sequences."
|
|
أكبر مسؤول طبي بريطاني: لهذا السبب يعيش الأطفال حياة أقصر
|
|
|
|
|
طريقة مبتكرة لمكافحة الفيروسات المهددة للبشرية
|
|
|
|
|
جامعة الكفيل تناقش تحضيراتها لإطلاق مؤتمرها العلمي الدولي السادس
|
|
|