تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Prime Array
المؤلف:
Dewdney, A. K.
المصدر:
"Computer Recreations: How to Pan for Primes in Numerical Gravel." Sci. Amer. 259
الجزء والصفحة:
...
3-9-2020
907
Prime Array
Find the array of single digits which contains the maximum possible number of primes, where allowable primes may lie along any horizontal, vertical, or diagonal line.
For the array, 11 primes are maximal and are contained in the two distinct arrays
![]() |
(1) |
giving the primes (3, 7, 13, 17, 31, 37, 41, 43, 47, 71, 73) and (3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97), respectively.
The best array is
![]() |
(2) |
which contains 30 primes: 3, 5, 7, 11, 13, 17, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 97, 113, 157, 179, ... (OEIS A032529). This array was found by Rivera and Ayala and shown by Weisstein in May 1999 to be maximal and unique (modulo reflection and rotation).
The best arrays known are
![]() |
(3) |
all of which contain 63 primes. The first was found by C. Rivera and J. Ayala in 1998, and the other three by James Bonfield on April 13, 1999. Mike Oakes proved by computation that the 63 primes is optimal for the array.
The best prime arrays known are
![]() |
(4) |
each of which contains 116 primes. The first was found by C. Rivera and J. Ayala in 1998, and the second by Wilfred Whiteside on April 17, 1999.
The best prime arrays known are
![]() |
(5) |
each of which contain 187 primes. One was found by S. C. Root, and the others by M. Oswald in 1998.
The best prime array known is
![]() |
(6) |
which contains 281 primes and was found by Wilfred Whiteside on April 29, 1999.
The best prime array known is
![]() |
(7) |
which contains 394 primes and was found by Wilfred Whiteside in 2005 as a part of Al Zimmerman's programming contest.
The best prime array known is
![]() |
(8) |
which contain 527 primes and was found by Gary Hertel.
Heuristic arguments by Rivera and Ayala suggest that the maximum possible number of primes in ,
, and
arrays are 58-63, 112-121, and 205-218, respectively. It is believed that all arrays up to
are now optimal (J.-C. Meyrignac, pers. comm., Sep. 19, 2005), giving the maximal numbers of primes for the
array for
, 2, ... as 1, 11, 30, 63, 116, 187, and 281 (OEIS A109943).
For the rectangular array, 18 primes are maximal and are contained in the arrays
![]() |
![]() |
![]() |
(9) |
For the rectangular array, 43 primes are maximal, and (modulo reflection and rotation) there are exactly 3 distinct solutions
![]() |
(10) |
as proved by Mike Oakes on Dec. 29, 2004 with a 12 GHz-hour computation that evaluated all candidate configurations.
REFERENCES:
Dewdney, A. K. "Computer Recreations: How to Pan for Primes in Numerical Gravel." Sci. Amer. 259, 120-123, July 1988.
Lee, G. "Winners and Losers." Dragon User. May 1984.
Lee, G. "Gordon's Paradoxically Perplexing Primesearch Puzzle." https://web.archive.org/web/20011117165915/https://www.geocities.com/MotorCity/7983/primesearch.html.
Rivera, C. "Problems & Puzzles: Puzzle 061-The Gordon Lee Puzzle." https://www.primepuzzles.net/puzzles/puzz_001.htm.
Sloane, N. J. A. Sequences A032529 and A109943 in "The On-Line Encyclopedia of Integer Sequences."
Zimmermann, A. "Best Grids for Part 1 Found During the Contest." https://www.recmath.org/contest/BestSolutions1.php.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
