Read More
Date: 24-8-2020
![]()
Date: 4-1-2021
![]()
Date: 21-11-2019
![]() |
Given relatively prime integers and
(i.e.,
), the Dedekind sum is defined by
![]() |
(1) |
where
![]() |
(2) |
with the floor function.
is an odd function since
and is periodic with period 1. The Dedekind sum is meaningful even if
, so the relatively prime restriction is sometimes dropped (Apostol 1997, p. 72). The symbol
is sometimes used instead of
(Beck 2000).
The Dedekind sum can also be expressed in the form
![]() |
(3) |
If , let
,
, ...,
denote the remainders in the Euclidean algorithm given by
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
for and
. Then
![]() |
(7) |
(Apostol 1997, pp. 72-73).
In general, there is no simple formula for closed-form evaluation of , but some special cases are
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(Apostol 1997, p. 62). Apostol (1997, p. 73) gives the additional special cases
![]() |
(10) |
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
for and
, where
and
. Finally,
![]() |
(14) |
for and
, where
or
.
Dedekind sums obey 2-term
![]() |
(15) |
(Dedekind 1953; Rademacher and Grosswald 1972; Pommersheim 1993; Apostol 1997, pp. 62-64) and 3-term
![]() |
(16) |
(Rademacher 1954), reciprocity laws, where ,
;
,
; and
,
are pairwise relatively prime, and
![]() |
(17) |
![]() |
(18) |
![]() |
(19) |
(Pommersheim 1993).
is an integer (Rademacher and Grosswald 1972, p. 28), and if
, then
![]() |
(20) |
and
![]() |
(21) |
In addition, satisfies the congruence
![]() |
(22) |
which, if is odd, becomes
![]() |
(23) |
(Apostol 1997, pp. 65-66). If , 5, 7, or 13, let
, let integers
,
,
,
be given with
such that
and
, and let
![]() |
(24) |
Then is an even integer (Apostol 1997, pp. 66-69).
Let ,
,
,
with
(i.e., are pairwise relatively prime), then the Dedekind sums also satisfy
![]() |
(25) |
where , and
,
are any integers such that
(Pommersheim 1993).
If is prime, then
![]() |
(26) |
(Dedekind 1953; Apostol 1997, p. 73). Moreover, it has been beautifully generalized by Knopp (1980).
REFERENCES:
Apostol, T. M. "Properties of Dedekind Sums," "The Reciprocity Law for Dedekind Sums," and "Congruence Properties of Dedekind Sums." §3.7-3.9 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 52 and 61-69, 1997.
Apostol, T. M. Ch. 12 in Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
Beck, M. "Dedekind Cotangent Sums" 7 Dec 2001. https://arxiv.org/abs/math.NT/0112077.
Dedekind, R. "Erlauterungen zu den Fragmenten, XXVIII." In The Collected Works of Bernhard Riemann. New York: Dover, pp. 466-478, 1953.
Iseki, S. "The Transformation Formula for the Dedekind Modular Function and Related Functional Equations." Duke Math. J. 24, 653-662, 1957.
Knopp, M. I. "Hecke Operators and an Identity for Dedekind Sums." J. Number Th. 12, 2-9, 1980.
Pommersheim, J. "Toric Varieties, Lattice Points, and Dedekind Sums." Math. Ann. 295, 1-24, 1993.
Rademacher, H. "Generalization of the Reciprocity Formula for Dedekind Sums." Duke Math. J. 21, 391-398, 1954.
Rademacher, H. and Grosswald, E. Dedekind Sums. Washington, DC: Math. Assoc. Amer., 1972.
Rademacher, H. and Whiteman, A. L. "Theorems on Dedekind Sums." Amer. J. Math. 63, 377-407, 1941.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|