Read More
Date: 8-7-2020
607
Date: 23-8-2020
1146
Date: 21-11-2019
872
|
The Dedekind -function is defined by the divisor product
(1) |
where the product is over the distinct prime factors of , with the special case . The first few values are
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
giving 1, 3, 4, 6, 6, 12, 8, 12, 12, 18, ... (OEIS A001615).
Sums for include
(12) |
|||||
(13) |
where is the Möbius function.
The Dirichlet generating function is given by
(14) |
|||
(15) |
where is the Riemann zeta function.
REFERENCES:
Cox, D. A. Primes of the Form x2+ny2: Fermat, Class Field Theory and Complex Multiplication. New York: Wiley, p. 228, 1997.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 96, 1994.
Sloane, N. J. A. Sequence A001615/M2315 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|