Read More
Date: 3-11-2019
![]()
Date: 3-9-2020
![]()
Date: 14-12-2019
![]() |
The Dedekind -function is defined by the divisor product
![]() |
(1) |
where the product is over the distinct prime factors of , with the special case
. The first few values are
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
giving 1, 3, 4, 6, 6, 12, 8, 12, 12, 18, ... (OEIS A001615).
Sums for include
![]() |
![]() |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where is the Möbius function.
The Dirichlet generating function is given by
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
where is the Riemann zeta function.
REFERENCES:
Cox, D. A. Primes of the Form x2+ny2: Fermat, Class Field Theory and Complex Multiplication. New York: Wiley, p. 228, 1997.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 96, 1994.
Sloane, N. J. A. Sequence A001615/M2315 in "The On-Line Encyclopedia of Integer Sequences."
|
|
تحذير من "عادة" خلال تنظيف اللسان.. خطيرة على القلب
|
|
|
|
|
دراسة علمية تحذر من علاقات حب "اصطناعية" ؟!
|
|
|
|
|
العتبة العباسية المقدسة تحذّر من خطورة الحرب الثقافية والأخلاقية التي تستهدف المجتمع الإسلاميّ
|
|
|