المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
النقل البحري
2024-11-06
النظام الإقليمي العربي
2024-11-06
تربية الماشية في جمهورية كوريا الشعبية الديمقراطية
2024-11-06
تقييم الموارد المائية في الوطن العربي
2024-11-06
تقسيم الامطار في الوطن العربي
2024-11-06
تربية الماشية في الهند
2024-11-06


Lattice Reduction  
  
1141   11:36 صباحاً   date: 20-7-2020
Author : Borwein, J. M. and Corless, R. M
Book or Source : "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106
Page and Part : ...


Read More
Date: 17-11-2019 648
Date: 20-1-2021 974
Date: 19-8-2020 716

Lattice Reduction

The process of finding a reduced set of basis vectors for a given lattice having certain special properties. Lattice reduction algorithms are used in a number of modern number theoretical applications, including in the discovery of a spigot algorithm for pi. Although determining the shortest basis is possibly an NP-complete problem, algorithms such as the LLL algorithm can find a short basis in polynomial time with guaranteed worst-case performance.

The LLL algorithm of lattice reduction is implemented in the Wolfram Language using the function LatticeReduceRootApproximant[xn] also calls this routine in order to find a algebraic number of degree at most n such that x is an approximate zero of the number.

When used to find integer relations, a typical input to the algorithm consists of an augmented n×n identity matrix with the entries in the last column consisting of the n elements (multiplied by a large positive constant w to penalize vectors that do not sum to zero) between which the relation is sought. For example, if an equality of the form

 a_1x+a_2y+a_3z=0

is known to exist, then doing a lattice reduction on the matrix

 m=[1 0 0 wx; 0 1 0 wy; 0 0 1 wz]

will produce a new matrix in which one or more entries in the last column being close to zero. This row then gives the coefficients {a_1,a_2,a_3,0} of the identity. An example lattice reduction calculation is illustrated in both Borwein and Corless (1999) and Borwein and Lisonek (2000).

An example implementation of integer relation finding in the Wolfram Language is given by the following, which can be called as, for example, TranscendentalRecognize[N[Pi + E], {PiEEulerGamma}].

TranscendentalRecognize[n_, basis_] := Module[
  {c, d, digs, e, id, lat, powerten, r, s, vals},
  {d, e} = RealDigits[n];
  s = Sign[n];
  c = FromDigits[d];
  powerten = 10^(Length[d] - e);
  digs = (RealDigits[N[#1, -e + Length[d] + 5]]&) /@ basis;
  r = (FromDigits[Take[First[#1], -e + Last[#1] + Length[d]]]&) /@
    digs;
  lat = Transpose[
    Append[IdentityMatrix[Length[basis] + 2],
     Flatten[{powerten, r, c}]]];
  vals = Take[First[LatticeReduce[lat]], Length[basis] + 2];
  Expand[-((s (Take[vals, {2, -2}].basis + First[vals]))/Last[vals])]]

REFERENCES:

Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.

Borwein, J. M. and Lisonek, P. "Applications of Integer Relation Algorithms." Disc. Math. 217, 65-82, 2000.

Cohen, H. A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, 1993.

Coster, M. J.; Joux, A.; LaMacchia, B. A.; Odlyzko, A. M.; Schnorr, C. P.; and Stern, J. "Improved Low-Density Subset Sum Algorithms." Comput. Complex. 2, 111-128, 1992.

Hastad, J.; Just, B.; Lagarias, J. C.; and Schnorr, C. P. "Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers." SIAM J. Comput. 18, 859-881, 1988.

Lagarias, J. C.; Lenstra, H. W. Jr.; and Schnorr, C. P. "Korkin-Zolotarev Bases and Successive Minima of a Lattice and Its Reciprocal Lattice." Combinatorica 10, 333-348, 1990.

Schnorr, C. P. "A More Efficient Algorithm for Lattice Basis Reduction." J. Algorithms 9, 47-62, 1988.

Schnorr, C. P. and Euchner, M. "Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems." In Fundamentals of Computation Theory: Proceedings of the 8th International Conference, Fct '91 Gosen, Germany, September 9-13, 1991. Berlin: Springer-Verlag, pp. 68-85, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.