تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Coin Problem
المؤلف:
Beck, M. and Robins, S
المصدر:
"The Coin-Exchange Problem of Frobenius." §C1 in Computing the Continuous Discretely. New York: Springer
الجزء والصفحة:
...
18-5-2020
2305
Coin Problem
Let there be integers
with
. The values
represent the denominations of
different coins, where these denominations have greatest common divisor of 1. The sums of money that can be represented using the given coins are then given by
![]() |
(1) |
where the are nonnegative integers giving the numbers of each coin used. If
, it is obviously possibly to represent any quantity of money
. However, in the general case, only some quantities
can be produced. For example, if the allowed coins are
, it is impossible to represent
and 3, although all other quantities can be represented.
Determining the function giving the greatest
for which there is no solution is called the coin problem, or sometimes the money-changing problem. The largest such
for a given problem is called the Frobenius number
.
The result
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Nijenhuis and Wilf 1972) is mathematical folklore. The total number of such nonrepresentable amounts is given by
![]() |
(4) |
The largest nonrepresentable amounts for two coins with denominations
and
are summarized below.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2 | 3 | 1 | 4 | 7 | 17 |
2 | 5 | 3 | 4 | 9 | 23 |
2 | 7 | 5 | 5 | 6 | 19 |
2 | 9 | 7 | 5 | 7 | 23 |
3 | 4 | 5 | 5 | 8 | 27 |
3 | 5 | 7 | 5 | 9 | 31 |
3 | 7 | 11 | 6 | 7 | 29 |
3 | 8 | 13 | 7 | 8 | 41 |
3 | 10 | 17 | 7 | 9 | 47 |
4 | 5 | 11 | 7 | 10 | 53 |
Fast algorithms are also known for three numbers, but the more general problem for an arbitrary number of numbers is known to be NP-hard if is fixed (Kannan 1992) or
is variable (Ramírez-Alfonsín 1996).
There is no closed-form solution for , although a semi-explicit solution is known which allows values to be computed quickly ((Selmer and Beyer 1978, Rödseth 1978, Greenberg 1988; Beck and Robins 2006). Values for small
are summarized below.
![]() |
![]() |
![]() |
![]() |
![]() |
1 | ![]() |
5 |
![]() |
1 | ![]() |
3 |
![]() |
1 | ![]() |
3 |
![]() |
1 | ![]() |
5 |
![]() |
3 | ![]() |
2 |
No closed-form solution is known for .
REFERENCES:
Beck, M. and Robins, S. "The Coin-Exchange Problem of Frobenius." §C1 in Computing the Continuous Discretely. New York: Springer, pp. 3-23, 2006. https://math.sfsu.edu/beck/ccd.html.
Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982.
Brauer, A. "On a Problem of Partitions." Amer. J. Math. 64, 299-312, 1942.
Brauer, A. and Seelbinder, B. M. "On a Problem of Partitions. II." Amer. J. Math. 76, 343-346, 1954.
Davison, J. L. "On the Linear Diophantine Problem of Frobenius." J. Number Th. 48, 353-363, 1994.
Greenberg, H. "Solution to a Linear Diophantine Equation for Nonnegative Integers." J. Algorithms 9, 343-353, 1988.
Guy, R. K. "The Money-Changing Problem." §C7 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 113-114, 1994.
Kannan, R. "Lattice Translates of a Polytope and the Frobenius Problem." Combinatorica 12, 161-177, 1992.
Nabiyev, V. V. Algorithms: From Theory to Applications. Ankara, Turkey: Seckin, p. 799, 2007.
Nijenhuis, A. "A Minimal-Path Algorithm for the 'Money Changing Problem.' " Amer. Math. Monthly 86, 832-835, 1979.
Nijenhuis, A. and Wilf, H. S. "Representations of Integers by Linear Forms in Nonnegative Integers." J. Number Th. 4, 98-106, 1972.
Ramírez-Alfonsín, J. L. "Complexity of the Frobenius Problem." Combinatorica 16, 143-147, 1996.
Ramírez-Alfonsín, J. L. The Diophantine Frobenius Problem. Oxford, England: Oxford University Press, 2005.
Rødseth, Ø. J. "On a Linear Diophantine Problem of Frobenius." J. reine angew. Math. 301, 171-178, 1978.
Rødseth, Ø. J. "On a Linear Diophantine Problem of Frobenius. II." J. reine angew. Math. 307/308, 431-440, 1979.
Selmer, E. S. "The Linear Diophantine Problem of Frobenius." J. reine angew. Math. 293/294, 1-17, 1977.
Selmer, E. S. and Beyer, Ö. "On the Linear Diophantine Problem of Frobenius in Three Variables." J. reine angew. Math. 301, 161-170, 1978.
Sylvester, J. J. "Question 7382." Mathematical Questions from the Educational Times 41, 21, 1884.
Wagon, S. "Greedy Coins." https://library.wolfram.com/infocenter/MathSource/5187/.
Wilf, H. "A Circle of Lights Algorithm for the 'Money Changing Problem.' " Amer. Math. Monthly 85, 562-565, 1978.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
