تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hypersphere
المؤلف:
Collins, G. P.
المصدر:
"The Shapes of Space." Sci. Amer. 291
الجزء والصفحة:
...
20-4-2020
2004
Hypersphere
The -hypersphere (often simply called the
-sphere) is a generalization of the circle (called by geometers the 2-sphere) and usual sphere (called by geometers the 3-sphere) to dimensions
. The
-sphere is therefore defined (again, to a geometer; see below) as the set of
-tuples of points (
,
, ...,
) such that
![]() |
(1) |
where is the radius of the hypersphere.
Unfortunately, geometers and topologists adopt incompatible conventions for the meaning of "-sphere," with geometers referring to the number of coordinates in the underlying space ("thus a two-dimensional sphere is a circle," Coxeter 1973, p. 125) and topologists referring to the dimension of the surface itself ("the
-dimensional sphere
is defined to be the set of all points
in
satisfying
," Hocking and Young 1988, p. 17; "the
-sphere
is
{x in R^n|d(x,0)=1}" src="https://mathworld.wolfram.com/images/equations/Hypersphere/Inline18.gif" style="height:18px; width:121px" />," Maunder 1997, p. 21). A geometer would therefore regard the object described by
![]() |
(2) |
as a 2-sphere, while a topologist would consider it a 1-sphere and denote it . Similarly, a geometer would regard the object described by
![]() |
(3) |
as a 3-sphere, while a topologist would call it a 2-sphere and denote it . Extreme caution is therefore advised when consulting the literature. Following the literature, both conventions are used in this work, depending on context, which is stated explicitly wherever it might be ambiguous.
Let denote the content (i.e.,
-dimensional volume) of an
-hypersphere (in the geometer's sense) of radius
is given by
![]() |
(4) |
where is the hyper-surface area of an
-sphere of unit radius. A unit hypersphere must satisfy
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
But the gamma function can be defined by
![]() |
(7) |
so
![]() |
(8) |
![]() |
(9) |
Special forms of for
an integer allow the above expression to be written as
(10) |
where is a factorial and
is a double factorial (OEIS A072478 and A072479).
Strangely enough, for the unit hypersphere, the hyper-surface area reaches a maximum and then decreases towards 0 as increases. The point of maximal hyper-surface area satisfies
![]() |
(11) |
where is the digamma function. This cannot be solved analytically for
, but the numerical solution is
(OEIS A074457; Wells 1986, p. 67). As a result, the seven-dimensional unit hypersphere has maximum hyper-surface area (Le Lionnais 1983; Wells 1986, p. 60).
In four dimensions, the generalization of spherical coordinates is given by
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
The equation for the 3-sphere is therefore
![]() |
(16) |
and the line element is
![]() |
(17) |
By defining , the line element can be rewritten
![]() |
(18) |
The hyper-surface area is therefore given by
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
REFERENCES:
Collins, G. P. "The Shapes of Space." Sci. Amer. 291, 94-103, July 2004.
Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
Hocking, J. G. and Young, G. S. Topology. New York: Dover, 1988.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 58, 1983.
Maunder, C. M. C. Algebraic Topology. New York: Dover, 1997.
Peterson, I. The Mathematical Tourist: Snapshots of Modern Mathematics. New York: W. H. Freeman, pp. 96-101, 1988.
Sloane, N. J. A. Sequences A072478, A072479, and A074457 in "The On-Line Encyclopedia of Integer Sequences."
Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
