المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

الحسن بن الحسن
7-03-2015
الانسولين Insulin
30-9-2018
تماثل Symmetry
3-11-2015
أساليب المعالجة والارتقاء بالعشوائيات السكنية - التنمية الاجتماعية والاقتصادية
31/10/2022
مجازر الصليبيين.
2023-08-20
طرق تصميم وإنشاء صفحات الموقع Web Site ومجلدات Front Page
23-7-2022

Hypersphere  
  
1521   04:43 مساءً   date: 20-4-2020
Author : Collins, G. P.
Book or Source : "The Shapes of Space." Sci. Amer. 291
Page and Part : ...


Read More
Date: 11-8-2020 477
Date: 3-11-2020 641
Date: 30-10-2019 621

Hypersphere 

The n-hypersphere (often simply called the n-sphere) is a generalization of the circle (called by geometers the 2-sphere) and usual sphere (called by geometers the 3-sphere) to dimensions n>=4. The n-sphere is therefore defined (again, to a geometer; see below) as the set of n-tuples of points (x_1x_2, ..., x_n) such that

 x_1^2+x_2^2+...+x_n^2=R^2,

(1)

where R is the radius of the hypersphere.

Unfortunately, geometers and topologists adopt incompatible conventions for the meaning of "n-sphere," with geometers referring to the number of coordinates in the underlying space ("thus a two-dimensional sphere is a circle," Coxeter 1973, p. 125) and topologists referring to the dimension of the surface itself ("the n-dimensional sphere S^n is defined to be the set of all points x=(x_1,x_2,...,x_(n+1)) in E^(n+1) satisfying x_1^2+...+x_(n+1)^2=1," Hocking and Young 1988, p. 17; "the (n-1)-sphere S^(n-1) is {x in R^n|d(x,0)=1}," Maunder 1997, p. 21). A geometer would therefore regard the object described by

 x_1^2+x_2^2=R^2

(2)

as a 2-sphere, while a topologist would consider it a 1-sphere and denote it S^1. Similarly, a geometer would regard the object described by

 x_1^2+x_2^2+x_3^2=R^2

(3)

as a 3-sphere, while a topologist would call it a 2-sphere and denote it S^2. Extreme caution is therefore advised when consulting the literature. Following the literature, both conventions are used in this work, depending on context, which is stated explicitly wherever it might be ambiguous.

Let V_n denote the content (i.e., n-dimensional volume) of an n-hypersphere (in the geometer's sense) of radius R is given by

 V_n=int_0^RS_nr^(n-1)dr=(S_nR^n)/n,

(4)

where S_n is the hyper-surface area of an n-sphere of unit radius. A unit hypersphere must satisfy

S_nint_0^inftye^(-r^2)r^(n-1)dr = int_(-infty)^infty...int_(-infty)^infty_()_(n)e^(-(x_1^2+...+x_n^2))dx_1...dx_m

(5)

= (int_(-infty)^inftye^(-x^2)dx)^n.

(6)

But the gamma function can be defined by

 Gamma(m)=2int_0^inftye^(-r^2)r^(2m-1)dr,

(7)

so

 1/2S_nGamma(1/2n)=[Gamma(1/2)]^n=(pi^(1/2))^n

(8)

 S_n=(2pi^(n/2))/(Gamma(1/2n)).

(9)

Special forms of Gamma(1/2n) for n an integer allow the above expression to be written as

 S_n={(2^((n+1)/2)pi^((n-1)/2))/((n-2)!!)   for n odd; (2pi^(n/2))/((1/2n-1)!)   for n even,

(10)

where n! is a factorial and n!! is a double factorial (OEIS A072478 and A072479).

HypersphereArea

Strangely enough, for the unit hypersphere, the hyper-surface area reaches a maximum and then decreases towards 0 as n increases. The point of maximal hyper-surface area satisfies

 (dS_n)/(dn)=(pi^(n/2)[lnpi-psi_0(1/2n)])/(Gamma(1/2n))=0,

(11)

where psi_0(x)=Psi(x) is the digamma function. This cannot be solved analytically for n, but the numerical solution is n=7.25695... (OEIS A074457; Wells 1986, p. 67). As a result, the seven-dimensional unit hypersphere has maximum hyper-surface area (Le Lionnais 1983; Wells 1986, p. 60).

In four dimensions, the generalization of spherical coordinates is given by

x_1 = Rsinpsisinphicostheta

(12)

x_2 = Rsinpsisinphisintheta

(13)

x_3 = Rsinpsicosphi

(14)

x_4 = Rcospsi.

(15)

The equation for the 3-sphere S^3 is therefore

 x_1^2+x_2^2+x_3^2+x_4^2=R^2,

(16)

and the line element is

 ds^2=R^2[dpsi^2+sin^2psi(dphi^2+sin^2phidtheta^2)].

(17)

By defining r=Rsinpsi, the line element can be rewritten

 ds^2=(dr^2)/((1-(r^2)/(R^2)))+r^2(dphi^2+sin^2phidtheta^2).

(18)

The hyper-surface area is therefore given by

S_3 = int_0^piRdpsiint_0^piRsinpsidphiint_0^(2pi)Rsinpsisinphidtheta

(19)

= 2pi^2R^3.

(20)


REFERENCES:

Collins, G. P. "The Shapes of Space." Sci. Amer. 291, 94-103, July 2004.

Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.

Hocking, J. G. and Young, G. S. Topology. New York: Dover, 1988.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 58, 1983.

Maunder, C. M. C. Algebraic Topology. New York: Dover, 1997.

Peterson, I. The Mathematical Tourist: Snapshots of Modern Mathematics. New York: W. H. Freeman, pp. 96-101, 1988.

Sloane, N. J. A. Sequences A072478, A072479, and A074457 in "The On-Line Encyclopedia of Integer Sequences."

Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.