Read More
Date: 28-1-2021
![]()
Date: 17-11-2019
![]()
Date: 5-1-2021
![]() |
The mean triangle area of a triangle picked inside a regular -gon of unit area is
![]() |
(1) |
where (Alikoski 1939; Solomon 1978, p. 109; Croft et al. 1991, p. 54). Prior to Alikoski's work, only the special cases
, 4, 6, 8, and
had been determined. The first few cases are summarized in the following table, where
is the largest root of
![]() |
(2) |
and is the largest root of
![]() |
(3) |
![]() |
![]() |
problem |
3 | ![]() |
triangle triangle picking |
4 | ![]() |
square triangle picking |
5 | ![]() |
pentagon triangle picking |
6 | ![]() |
hexagon triangle picking |
7 | ![]() |
|
8 | ![]() |
|
9 | ![]() |
|
10 | ![]() |
Amazingly, the algebraic degree of is equal to
, where
is the totient function, giving the first few terms for
, 4, ... as 1, 1, 2, 1, 3, 2, 3, 2, 5, 2, 6, 3, 4, 4, 8, ... (OEIS A023022). Therefore, the only values of
for which
is rational are
, 4, and 6.
REFERENCES:
Alikoski, H. A. "Über das Sylvestersche Vierpunktproblem." Ann. Acad. Sci. Fenn. 51, No. 7, 1-10, 1939.
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, 1991.
Kendall, M. G. "Exact Distribution for the Shape of Random Triangles in Convex Sets." Adv. Appl. Prob. 17, 308-329, 1985.
Kendall, M. G. and Le, H.-L. "Exact Shape Densities for Random Triangles in Convex Polygons." Adv. Appl. Prob. 1986 Suppl., 59-72, 1986.
Sloane, N. J. A. Sequence A023022 in "The On-Line Encyclopedia of Integer Sequences."
Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, pp. 109-114, 1978.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|