Read More
Date: 26-7-2020
627
Date: 16-10-2019
866
Date: 20-8-2020
569
|
has decimal expansion given by
(1) |
(OEIS A000796). The following table summarizes some record computations of the digits of .
1999 | Kanada, Ushio and Kuroda | |
Dec. 2002 | Kanada, Ushio and Kuroda (Peterson 2002, Kanada 2003) | |
Aug. 2012 | A. J. Yee (Yee) | |
Aug. 2012 | S. Kondo and A. J. Yee (Yee) | |
Dec. 2013 | A. J. Yee and S. Kondo (Yee) |
The calculation of the digits of has occupied mathematicians since the day of the Rhind papyrus (1500 BC). Ludolph van Ceulen spent much of his life calculating to 35 places. Although he did not live to publish his result, it was inscribed on his gravestone. Wells (1986, p. 48) discusses a number of other calculations. The calculation of also figures in the Season 2 Star Trek episode "Wolf in the Fold" (1967), in which Captain Kirk and Mr. Spock force an evil entity (composed of pure energy and which feeds on fear) out of the starship Enterprise's computer by commanding the computer to "compute to the last digit the value of pi," thus sending the computer into an infinite loop.
Al-Kāshi of Samarkand computed the sexagesimal digits of as
(2) |
(OEIS A091649) using -gons, a value accurate to 17 decimal places (Borwein and Bailey 2003, p. 107).
The binary representation of the decimal digits of (top figure) and decimal representation (bottom figure) of are illustrated above.
A plot of the first 1600 decimal digits of (mod 2) is shown above (left figure), with the corresponding plot for 22/7 shown at right. Here, white indicates an even digit and black an odd digit (Pickover 2002, p. 285).
Spigot (Rabinowitz and Wagon 1995; Arndt and Haenel 2001; Borwein and Bailey 2003, pp. 140-141) and base-16 digit-extraction algorithms (the BBP formula) are known for . A remarkable recursive formula conjectured to give the th hexadecimal digit of is given by , where is the floor function,
(3) |
is the fractional part and (Borwein and Bailey 2003, Ch. 4; Bailey et al. 2007, pp. 22-23).
Pi-primes, i.e., -constant primes occur at 2, 6, 38, 16208, 47577, 78073, 613373, ... (OEIS A060421) decimal digits.
The beast number 666 appears in at decimals 2440, 3151, 4000, 4435, 5403, 6840, (OEIS A083625). The first occurrences of just consecutive 6s are 7, 117, 2440, 21880, 48439, 252499, 8209165, 55616210, 45681781, ... (OEIS A096760), while (or more) consecutive 6s first occur at 7, 117, 2440, 21880, 48439, 252499, 8209165, 45681781, 45681781, ... (OEIS A050285).
The digits 314159 appear at positions 176451, 1259351, 1761051, 6467324, 6518294, 9753731, 9973760, ... (correcting Pickover 1995).
The sequence 0123456789 occurs beginning at digits , , , , , and (OEIS A101815; cf. Wells 1986, pp. 51-52).
The sequence 9876543210 occurs beginning at digits , , , , and (OEIS A101816).
The sequence 27182818284 (the first few digits of e) occurs beginning at digit (see also Pickover's sequence).
There are also interesting patterns for . 0123456789 occurs at , 9876543210 occurs at and , and 999999999999 occurs at of .
The starting positions of the first occurrence of , 1, 2, ... in the decimal expansion of (including the initial 3 and counting it as the first digit) are 33, 2, 7, 1, 3, 5, 8, 14, ... (OEIS A032445).
Scanning the decimal expansion of until all -digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 0, 68, 483, 6716, 33394, 569540, ... (OEIS A032510), which end at digits 33, 607, 8556, 99850, 1369565, ... (OEIS A080597).
A curiosity relating to the beast number 666 involves adding the first three sextads of . First, note that
(4) |
Now, skip ahead 15 decimal places and note that the sum is repeated as
(5) |
(pers. comm., P. Olivera, Aug. 11, 2005; Olivera).
It is not known if is normal (Wagon 1985, Bailey and Crandall 2001), although the first 30 million digits are very uniformly distributed (Bailey 1988).
The following distribution of decimal digits is found for the first digits of (Kanada 2003). It shows no statistically significant departure from a uniform distribution.
OEIS | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
0 | A099291 | 8 | 93 | 968 | 9999 | 99959 | 999440 | 9999922 | 99993942 | 999967995 | 10000104750 | 99999485134 |
1 | A099292 | 8 | 116 | 1026 | 10137 | 99758 | 999333 | 10002475 | 99997334 | 1000037790 | 9999937631 | 99999945664 |
2 | A099293 | 12 | 103 | 1021 | 9908 | 100026 | 1000306 | 10001092 | 100002410 | 1000017271 | 10000026432 | 100000480057 |
3 | A099294 | 11 | 102 | 974 | 10025 | 100229 | 999964 | 9998442 | 99986911 | 999976483 | 9999912396 | 99999787805 |
4 | A099295 | 10 | 93 | 1012 | 9971 | 100230 | 1001093 | 10003863 | 100011958 | 999937688 | 10000032702 | 100000357857 |
5 | A099296 | 8 | 97 | 1046 | 10026 | 100359 | 1000466 | 9993478 | 99998885 | 1000007928 | 9999963661 | 99999671008 |
6 | A099297 | 9 | 94 | 1021 | 10029 | 99548 | 999337 | 9999417 | 100010387 | 999985731 | 9999824088 | 99999807503 |
7 | A099298 | 8 | 95 | 970 | 10025 | 99800 | 1000207 | 9999610 | 99996061 | 1000041330 | 10000084530 | 99999818723 |
8 | A099299 | 12 | 101 | 948 | 9978 | 99985 | 999814 | 10002180 | 100001839 | 999991772 | 10000157175 | 100000791469 |
9 | A099300 | 14 | 106 | 1014 | 9902 | 100106 | 1000040 | 9999521 | 100000273 | 1000036012 | 9999956635 | 99999854780 |
The following table gives the first few positions at which a digit occurs times. The sequence 1, 135, 1698, 54525, 24466, 252499, 3346228, 46663520, 564665206, ... (OEIS A061073) given by the diagonal (plus any terms of the form 10 10's etc.) is known as the Earls sequence (Pickover 2002, p. 339). The sequence 999999 occurs at decimal 762 (which is sometimes called the Feynman point; Wells 1986, p. 51) and continues as 9999998, which is largest value of any seven digits in the first million decimals.
OEIS | strings of 1, 2, ...s first occur at | |
0 | A050279 | 32, 307, 601, 13390, 17534, 1699927, ... |
1 | A035117 | 1, 94, 153, 12700, 32788, 255945, ... |
2 | A050281 | 6, 135, 1735, 4902, 65260, 963024, ... |
3 | A050282 | 9, 24, 1698, 28467, 28467, 710100, ... |
4 | A050283 | 2, 59, 2707, 54525, 808650, 828499, ... |
5 | A050284 | 4, 130, 177, 24466, 24466, 244453, ... |
6 | A050285 | 7, 117, 2440, 21880, 48439, 252499, ... |
7 | A050286 | 13, 559, 1589, 1589, 162248, 399579, ... |
8 | A050287 | 11, 34, 4751, 4751, 213245, 222299, ... |
9 | A048940 | 5, 44, 762, 762, 762, 762, 1722776, ... |
REFERENCES:
Adamchik, V. and Wagon, S. "A Simple Formula for ." Amer. Math. Monthly 104, 852-855, 1997.
Anderson, D. "The Pi-Search Page." http://www.angio.net/pi/piquery.
Arndt, J. and Haenel, C. Pi--Unleashed, 2nd ed. Berlin: Springer-Verlag, 2001.
Bailey, D. H. "The Computation of to Decimal Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50, 283-296, 1988.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. http://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
Borwein, J. M. "Talking About Pi." http://www.cecm.sfu.ca/personal/jborwein/pi_cover.html.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.
Caldwell, C. K. and Dubner, H. "Primes in Pi." J. Recr. Math. 29, 282-289, 1998.
Gibbs, W. W. "A Digital Slice of Pi. The New Way to do Pure Math: Experimentally." Sci. Amer. 288, 23-24, May 2003.
Gourdon, X. and Sebah, P. "PiFast: The Fastest Program to Compute Pi." http://numbers.computation.free.fr/Constants/PiProgram/pifast.html.
Kanada, Y. "New World Record of Pi: 51.5 Billion Decimal Digits." http://www.cecm.sfu.ca/personal/jborwein/Kanada_50b.html.
Kanada, Y. "Our Latest Record." Sep. 20, 1999. ftp://www.cc.u-tokyo.ac.jp/README.our_latest_record
Kanada, Y. "Sample Digits for Decimal Digits of Pi." Jan. 18, 2003. http://www.super-computing.org/pi-decimal_current.html.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 50, 1983.
National Energy Research Scientific Computing Center. "Search ." http://pi.nersc.gov/.
Olivera, P. "brief Description of Events About How I Found a Curious Pattern in Pi, Many Years Ago, While Searching for Patterns and Sequences." http://www.geocities.com/pi_curiosity/englishstory.html.
Peterson, I. "Pick a Digit, Any Digit." Sci. News Online, Feb. 28, 1998. http://www.sciencenews.org/sn_arc98/2_28_98/mathland.htm.
Peterson, I. "Pi by the Billions." Sci. News 156, 255, Oct. 16, 1999.
Peterson, I. "Pi à la mode." Sci. News 160, 136-137, Sep. 1, 2001. http://www.sciencenews.org/20010901/bob9.asp.
Peterson, I. "A Passion for Pi." In Mathematical Treks: From Surreal Numbers to Magic Circles. Washington, DC: Math. Assoc. Amer., 2001.
Peterson, I. "MathTrek: A Trillion Pieces of Pi." Dec. 14, 2002. http://www.sciencenews.org/20021214/mathtrek.asp.
Pickover, C. A. Keys to Infinity. New York: Wiley, p. 62, 1995.
Pickover, C. A. The Mathematics of Oz: Mental Gymnastics from Beyond the Edge. New York: Cambridge University Press, pp. 284-285, 2002.
Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.
Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of ." Amer. Math. Monthly 102, 195-203, 1995.
Sloane, N. J. A. Sequences A000796/M2218, A032150, A032445, A035117, A036903, A036974, A037000, A037001, A037002, A037003, A037004, A037005, A037006, A037007, A037008, A048940, A050201, A050202, A050203, A050208, A050209, A050215, A050222, A050230, A050238, A050245, A050254, A050263, A050272, A050279, A050281, A050282, A050283, A050284, A050285, A050286, A050287, A060421, A061073, A080597, A083625, A091649, A096760, A099291, A099292, A099293, A099294, A099295, A099296, A099297, A099298, A099299, A099300, A101815, and A101816 in "The On-Line Encyclopedia of Integer Sequences."
Smith, H. J. "Computing Pi." http://www.geocities.com/hjsmithh/Pi.html.
Wagon, S. "Is Normal?" Math. Intel. 7, 65-67, 1985.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 46, 1986.
Wrench, J. W. Jr. "The Evolution of Extended Decimal Approximations to ." Math. Teacher 53, 644-650, 1960.
Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|