Read More
Date: 12-7-2020
861
Date: 1-12-2019
1057
Date: 17-2-2020
561
|
Let be a number field, then each fractional ideal of belongs to an equivalence class consisting of all fractional ideals satisfying for some nonzero element of . The number of equivalence classes of fractional ideals of is a finite number, known as the class number of . Multiplication of equivalence classes of fractional ideals is defined in the obvious way, i.e., by letting . It is easy to show that with this definition, the set of equivalence classes of fractional ideals form an Abelian multiplicative group, known as the class group of .
REFERENCES:
Marcus, D. A. Number Fields, 3rd ed. New York: Springer-Verlag, 1996.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|