Read More
Date: 3-6-2019
1684
Date: 17-6-2019
2533
Date: 23-6-2019
1165
|
The Poisson-Charlier polynomials form a Sheffer sequence with
(1) |
|||
(2) |
giving the generating function
(3) |
The Sheffer identity is
(4) |
where is a falling factorial (Roman 1984, p. 121). The polynomials satisfy the recurrence relation
(5) |
These polynomials belong to the distribution where is a step function with jump
(6) |
at , 1, ... for . They are given by the formulas
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
where is a binomial coefficient, is a falling factorial, is an associated Laguerre polynomial, is a Stirling number of the first kind, and
(12) |
|||
(13) |
They are normalized so that
(14) |
where is the delta function.
The first few polynomials are
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
REFERENCES:
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. New York: Krieger, p. 226, 1981.
Jordan, C. Calculus of Finite Differences, 3rd ed. New York: Chelsea, p. 473, 1965.
Roman, S. "The Poisson-Charlier Polynomials." §4.3.3 in The Umbral Calculus. New York: Academic Press, pp. 119-122, 1984.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 34-35, 1975.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|