Read More
Date: 19-5-2018
1590
Date: 24-3-2019
1140
Date: 30-3-2019
1593
|
Polynomials that can be defined by the sum
(1) |
for , where is the floor function. They obey the recurrence relation
(2) |
for . They have the integral representation
(3) |
and the generating function
(4) |
(Gradshteyn and Ryzhik 2000, p. 990), and obey the Neumann differential equation.
The first few Neumann polynomials are given by
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
(OEIS A057869).
REFERENCES:
Erdelyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. Krieger, pp. 32-33, 1981.
Gradshteyn, I. S. and Ryzhik, I. M. "Neumann's and Schläfli Polynomials: and ." §8.59 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 989-991, 2000.
Sloane, N. J. A. Sequence A057869 in "The On-Line Encyclopedia of Integer Sequences."
von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, p. 196, 1993.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, pp. 298-305, 1966.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|