 
					
					
						Lindelöf Hypothesis					
				 
				
					
						 المؤلف:  
						Edwards, H. M.
						 المؤلف:  
						Edwards, H. M.					
					
						 المصدر:  
						Riemann,s Zeta Function. New York: Dover, 2001.
						 المصدر:  
						Riemann,s Zeta Function. New York: Dover, 2001.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 9-9-2019
						9-9-2019
					
					
						 1422
						1422					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Lindelöf Hypothesis
Let  be the least upper bound of the numbers
 be the least upper bound of the numbers  such that
 such that  is bounded as
 is bounded as  , where
, where  is the Riemann zeta function. Then the Lindelöf hypothesis states that
 is the Riemann zeta function. Then the Lindelöf hypothesis states that  is the simplest function that is zero for
 is the simplest function that is zero for  and
 and  for
 for  .
.
The Lindelöf hypothesis is equivalent to the hypothesis that  (Edwards 2001, p. 186).
 (Edwards 2001, p. 186).
Backlund (1918-1919) proved that the Lindelöf hypothesis is equivalent to the statement that for every  , the number of roots in the rectangle
, the number of roots in the rectangle ![<span style=]() {T<=I[s]<=T+1,sigma<=R[s]<=1}" src="http://mathworld.wolfram.com/images/equations/LindelofHypothesis/Inline12.gif" style="height:14px; width:185px" /> grows less rapidly than
{T<=I[s]<=T+1,sigma<=R[s]<=1}" src="http://mathworld.wolfram.com/images/equations/LindelofHypothesis/Inline12.gif" style="height:14px; width:185px" /> grows less rapidly than  as
 as  (Edwards 2001, p. 188).
 (Edwards 2001, p. 188).
REFERENCES:
Backlund, R. "Über die Beziehung zwischen Anwachsen und Nullstellen der Zeta-Funktion." Ofversigt Finka Vetensk. Soc. 61, No. 9, 1918-1919.
Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.
Lindelöf, E. "Quelque remarques sur la croissance de la fonction  ." Bull. Sci. Math. 32, 341-356, 1908.
." Bull. Sci. Math. 32, 341-356, 1908.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة