Read More
Date: 23-8-2018
![]()
Date: 25-5-2019
![]()
Date: 30-3-2019
![]() |
The Epstein zeta function for a matrix
of a positive definite real quadratic form and
a complex variable with
(where
denotes the real part) is defined by
![]() |
(1) |
where the sum is over all column vectors with integer coordinates and the prime means the summation excludes the origin (Terras 1973). Epstein (1903) derived the analytic continuation, functional equation, and so-called Kronecker limit formula for this function.
Epstein (1903) defined this function in the course of an effort to find the most general possible function satisfying a functional equation similar to that satisfied by the Riemann zeta function (Glasser and Zucker 1980, p. 68).
A slightly different notation is used in theoretical chemistry, where the Epstein zeta function arises in connection with lattice sums. Let be a positive definite quadratic form
![]() |
(2) |
where with
, ...
is a symmetric matrix. Then the Epstein zeta function can be defined as
![]() |
(3) |
where and
are arbitrary vectors, the sum runs over a
-dimensional lattice, and
is omitted if
is a lattice vector (Glasser and Zucker 1980, p. 69).
REFERENCES:
Bateman, P. T. and Grosswald, E. "On Epstein's Zeta Function." Acta Arith. 9, 365-373, 1964.
Chowla, S. and Selberg, A. "On Epstein's Zeta Function (I)." Proc. Nat. Acad. Sci. USA 35, 371-374, 1949.
Deuring, M. F. "On Epstein's Zeta Function." Ann. Math. 38, 585-593, 1937.
Epstein, P. "Zur Theorie allgemeiner Zetafunktionen. I." Math. Ann. 56, 614-644, 1903.
Glasser, M. L. and Zucker, I. J. "Lattice Sums in Theoretical Chemistry." In Theoretical Chemistry: Advances and Perspectives, Vol. 5 (Ed. H. Eyring). New York: Academic Press, pp. 67-139, 1980.
Hecke, E. Mathematische Werke. Göttingen, Germany: Vandenhoeck & Ruprecht, 1959.
Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.
Shanks, D. "Calculation and Applications of Epstein Zeta Functions." Math. Comput. 29, 271-287, 1975.
Siegel, C. L. Lectures on Advanced Analytic Number Theory. Tata Inst., Bombay, 1961.
Taylor, P. R. "The Functional Equation for Epstein's Zeta-Function." Quart. J. Math. 11, 177-182, 1940.
Terras, A. A. "Bessel Series Expansions of the Epstein Zeta Function and the Functional Equation." Trans. Amer. Math. Soc. 183, 477-486, 1973.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|