Read More
Date: 25-3-2019
1450
Date: 23-7-2019
2418
Date: 17-9-2018
1692
|
A q-analog of Gauss's theorem due to Jacobi and Heine,
(1) |
for (Gordon and McIntosh 1997; Koepf 1998, p. 40), where is a q-hypergeometric function. A special case for is given by
(2) |
|||
(3) |
where is a q-binomial coefficient (Koepf 1998, p. 43).
REFERENCES:
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 31, 1995.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 10 and 236, 1990.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities." Ramanujan J. 1, 431-448, 1997.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
معهد الكفيل للنطق والتأهيل: أطلقنا برامج متنوعة لدعم الأطفال وتعزيز مهاراتهم التعليمية والاجتماعية
|
|
|