Read More
Date: 10-6-2019
3543
Date: 23-4-2019
1730
Date: 12-8-2018
1731
|
A q-analog of Gauss's theorem due to Jacobi and Heine,
(1) |
for (Gordon and McIntosh 1997; Koepf 1998, p. 40), where is a q-hypergeometric function. A special case for is given by
(2) |
|||
(3) |
where is a q-binomial coefficient (Koepf 1998, p. 43).
REFERENCES:
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 31, 1995.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 10 and 236, 1990.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities." Ramanujan J. 1, 431-448, 1997.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|