Gordon,s Partition Theorem
المؤلف:
Gordon, B.
المصدر:
"A Combinatorial Generalization of the Rogers-Ramanujan Identities." Amer. J. Math. 83
الجزء والصفحة:
...
23-8-2019
1722
Gordon's Partition Theorem
Let
denote the number of partitions into
parts not congruent to 0,
, or
(mod
). Let
denote the number of partitions of
wherein
1. 1 appears as a part at most
times.
2. The total number of appearances of
and
(i.e., any two consecutive integers) together is at most
.
Then Gordon's partition theorem states that for
,
The first Rogers-Ramanujan identity corresponds to
, and the second to
,
.
REFERENCES:
Andrews, G. E. and Santos, J. P. O. "Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts." Ramanujan J. 1, 91-99, 1997.
Gordon, B. "A Combinatorial Generalization of the Rogers-Ramanujan Identities." Amer. J. Math. 83, 393-399, 1961.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة