تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Catalan,s Conjecture
المؤلف:
Bilu, Y. F.
المصدر:
"Catalan Without Logarithmic Forms (after Bugeaud, Hanrot and Mihăilescu)." J. Théor. Nombres Bordeaux 17
الجزء والصفحة:
...
14-8-2019
2939
Catalan's Conjecture
The conjecture made by Belgian mathematician Eugène Charles Catalan in 1844 that 8 and 9 ( and
) are the only consecutive powers (excluding 0 and 1). In other words,
![]() |
(1) |
is the only nontrivial solution to Catalan's Diophantine problem
![]() |
(2) |
The special case and
is the
case of a Mordell curve.
Interestingly, more than 500 years before Catalan formulated his conjecture, Levi ben Gerson (1288-1344) had already noted that the only powers of 2 and 3 that apparently differed by 1 were and
(Peterson 2000).
This conjecture had defied all attempts to prove it for more than 150 years, although Hyyrő and Makowski proved that no three consecutive powers exist (Ribenboim 1996), and it was also known that 8 and 9 are the only consecutive cubic and square numbers(in either order). Finally, on April 18, 2002, Mihăilescu sent a manuscript proving the entire conjecture to several mathematicians (van der Poorten 2002). The proof has now appeared in print (Mihăilescu 2004) and is widely accepted as being correct and valid (Daems 2003, Metsänkylä 2003).
Tijdeman (1976) showed that there can be only a finite number of exceptions should the conjecture not hold. More recent progress showed the problem to be decidable in a finite (but more than astronomical) number of steps and that, in particular, if and
are powers, then
(Guy 1994, p. 155). In 1999, M. Mignotte showed that if a nontrivial solution exists, then
,
(Peterson 2000).
It had also been known that if additional solutions to the equation exist, either the exponents must be double Wieferich prime pairs, or
and
must satisfy a class number divisibility condition (Steiner 1998). Constraints on this class number condition were continuously improved starting with Inkeri (1964) and continuing through the work of Steiner (1998). Then, in the spring of 1999, Bugeaud and Hanrot proved the weakest possible class number condition holds unconditionally (i.e., irrespective of whether
and
are a double Wieferich prime pair or not). Subsequently, in Autumn 2000, Mihailescu proved that the double Wieferich prime pair condition also must hold unconditionally (Peterson 2000).
A generalization to Gaussian integers that differ by a unit is given by
![]() |
(3) |
REFERENCES:
Bilu, Y. F. "Catalan's Conjecture (After Mihăilescu)." Astérisque, No. 294, 1-26, 2004.
Bilu, Y. F. "Catalan Without Logarithmic Forms (after Bugeaud, Hanrot and Mihăilescu)." J. Théor. Nombres Bordeaux 17, 69-85, 2005.
Catalan, E. "Note extraite d'une lettre adressée à l'éditeur." J. reine angew. Math. 27, 192, 1844.
Daems, J. "A Cyclotomic Proof of Catalan's Conjecture." Sept. 29, 2003. http://www.math.leidenuniv.nl/~jdaems/scriptie/Catalan.pdf.
Guy, R. K. "Difference of Two Power." §D9 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 155-157, 1994.
Inkeri, K. "On Catalan's Problem." Acta Arith. 9, 285-290, 1964.
Metsänkylä, T. "Catalan's Conjecture: Another Old Diophantine Problem Solved." Bull. Amer. Math. Soc. 41, 43-57, 2003.
Mihăilescu, P. "A Class Number Free Criterion for Catalan's Conjecture." J. Number Th. 99, 225-231, 2003.
Mihăilescu, P. "Primary Cyclotomic Units and a Proof of Catalan's Conjecture." J. reine angew. Math. 572, 167-195, 2004.
Peterson, I. "MathTrek: Zeroing In on Catalan's Conjecture." Dec. 4, 2000. http://www.sciencenews.org/20001202/mathtrek.asp.
Ribenboim, P. "Consecutive Powers." Expositiones Mathematicae 2, 193-221, 1984.
Ribenboim, P. Catalan's Conjecture: Are 8 and 9 the only Consecutive Powers? Boston, MA: Academic Press, 1994.
Ribenboim, P. "Catalan's Conjecture." Amer. Math. Monthly 103, 529-538, 1996.
Steiner, R. "Class Number Bounds and Catalan's Equation." Math. Comput. 67, 1317-1322, 1998.
Tijdeman, R. "On the Equation of Catalan." Acta Arith. 29, 197-209, 1976.
van der Poorten, A. "Concerning: Catalan's Conjecture Proved?." 5 May 2002. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0205&L=nmbrthry&P=269.
Weisstein, E. W. "Draft Proof of Catalan's Conjecture Circulated." MathWorld Headline News, May 5, 2002. http://mathworld.wolfram.com/news/2002-05-05/catalan/.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 71 and 73, 1986.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
