Read More
Date: 3-9-2019
1489
Date: 25-5-2019
1326
Date: 17-9-2019
915
|
If denotes the usual dilogarithm, then there are two variants that are normalized slightly differently, both called the Rogers -function (Rogers 1907). Bytsko (1999) defines
(1) |
|||
(2) |
(which he calls "the" dilogarithm), while Gordon and McIntosh (1997) and Loxton (1991, p. 287) define the Rogers -function as
(3) |
|||
(4) |
|||
(5) |
The function satisfies the concise reflection relation
(6) |
(Euler 1768), as well as Abel's functional equation
(7) |
(Abel 1988, Bytsko 1999). Abel's duplication formula for follows from Abel's functional equation and is given by
(8) |
The function has the nice series
(9) |
(Lewin 1982; Loxton 1991, p. 298).
In terms of , the well-known dilogarithm identities become
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
(Loxton 1991, pp. 287 and 289; Bytsko 1999), where .
Numbers which satisfy
(15) |
for some value of are called L-algebraic numbers. Loxton (1991, p. 289) gives a slew of identities having rational coefficients
(16) |
instead of integers, where is a rational number, a corrected and expanded version of which is summarized in the following table. In this table, polynomials denote the real root of . Many more similar identities can be found using integer relationalgorithms.
1 | 1 | 1 |
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
3 | ||
, | ||
1 | ||
2 | ||
3 | ||
1 | ||
2 | ||
Bytsko (1999) gives the additional identities
(17) |
|
(18) |
|
(19) |
|
(20) |
|
(21) |
|
(22) |
|
(23) |
|
(24) |
|
(25) |
where
(26) |
|||
(27) |
|||
(28) |
with the positive root of
(29) |
and and the real roots of
(30) |
Here, (◇) and (◇) are special cases of Watson's identities and (◇) is a special case of Abel's duplication formula with (Gordon and McIntosh 1997, Bytsko 1999).
Rogers (1907) obtained a dilogarithm identity in variables with terms which simplifies to Euler's identity for and Abel's functional equation for (Gordon and McIntosh 1997). For , it is equivalent to
(31) |
with
(32) |
|||
(33) |
(Gordon and McIntosh 1997).
REFERENCES:
Abel, N. H. Oeuvres Completes, Vol. 2 (Ed. L. Sylow and S. Lie). New York: Johnson Reprint Corp., pp. 189-192, 1988.
Bytsko, A. G. "Fermionic Representations for Characters of , , and Minimal Models and Related Dilogarithm and Rogers-Ramanujan-Type Identities." J. Phys. A: Math. Gen. 32, 8045-8058, 1999.
Bytsko, A. G. "Two-Term Dilogarithm Identities Related to Conformal Field Theory." 9 Nov 1999. http://arxiv.org/abs/math-ph/9911012.
Euler, L. Institutiones calculi integralis, Vol. 1. Basel, Switzerland: Birkhäuser, pp. 110-113, 1768.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities." Ramanujan J. 1, 431-448, 1997.
Lewin, L. "The Dilogarithm in Algebraic Fields." J. Austral. Math. Soc. (Ser. A) 33, 302-330, 1982.
Lewin, L. (Ed.). Structural Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.
Loxton, J. H. "Partition Identities and the Dilogarithm." Ch. 13 in Structural Properties of Polylogarithms (Ed. L. Lewin). Providence, RI: Amer. Math. Soc., pp. 287-299, 1991.
Rogers, L. J. "On Function Sum Theorems Connected with the Series ." Proc. London Math. Soc. 4, 169-189, 1907.
Watson, G. N. "A Note on Spence's Logarithmic Transcendent." Quart. J. Math. Oxford Ser. 8, 39-42, 1937.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
معهد الكفيل للنطق والتأهيل: أطلقنا برامج متنوعة لدعم الأطفال وتعزيز مهاراتهم التعليمية والاجتماعية
|
|
|