Read More
Date: 12-10-2018
![]()
Date: 1-8-2019
![]()
Date: 23-5-2019
![]() |
If denotes the usual dilogarithm, then there are two variants that are normalized slightly differently, both called the Rogers
-function (Rogers 1907). Bytsko (1999) defines
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
(which he calls "the" dilogarithm), while Gordon and McIntosh (1997) and Loxton (1991, p. 287) define the Rogers -function as
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
The function satisfies the concise reflection relation
![]() |
(6) |
(Euler 1768), as well as Abel's functional equation
![]() |
(7) |
(Abel 1988, Bytsko 1999). Abel's duplication formula for follows from Abel's functional equation and is given by
![]() |
(8) |
The function has the nice series
![]() |
(9) |
(Lewin 1982; Loxton 1991, p. 298).
In terms of , the well-known dilogarithm identities become
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
(Loxton 1991, pp. 287 and 289; Bytsko 1999), where .
Numbers which satisfy
![]() |
(15) |
for some value of are called L-algebraic numbers. Loxton (1991, p. 289) gives a slew of identities having rational coefficients
![]() |
(16) |
instead of integers, where is a rational number, a corrected and expanded version of which is summarized in the following table. In this table, polynomials
denote the real root of
. Many more similar identities can be found using integer relationalgorithms.
![]() |
![]() |
![]() |
1 | 1 | 1 |
![]() |
1 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 |
![]() |
1 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 |
![]() |
![]() |
2 |
![]() |
![]() |
![]() |
![]() |
![]() |
3 |
![]() |
![]() |
1 |
![]() |
![]() |
2 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bytsko (1999) gives the additional identities
![]() |
(17) |
![]() |
(18) |
![]() |
(19) |
![]() |
(20) |
![]() |
(21) |
![]() |
(22) |
![]() |
(23) |
![]() |
(24) |
![]() |
(25) |
where
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
with the positive root of
![]() |
(29) |
and and
the real roots of
![]() |
(30) |
Here, (◇) and (◇) are special cases of Watson's identities and (◇) is a special case of Abel's duplication formula with (Gordon and McIntosh 1997, Bytsko 1999).
Rogers (1907) obtained a dilogarithm identity in variables with
terms which simplifies to Euler's identity for
and Abel's functional equation for
(Gordon and McIntosh 1997). For
, it is equivalent to
![]() |
(31) |
with
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
(Gordon and McIntosh 1997).
REFERENCES:
Abel, N. H. Oeuvres Completes, Vol. 2 (Ed. L. Sylow and S. Lie). New York: Johnson Reprint Corp., pp. 189-192, 1988.
Bytsko, A. G. "Fermionic Representations for Characters of ,
,
and
Minimal Models and Related Dilogarithm and Rogers-Ramanujan-Type Identities." J. Phys. A: Math. Gen. 32, 8045-8058, 1999.
Bytsko, A. G. "Two-Term Dilogarithm Identities Related to Conformal Field Theory." 9 Nov 1999. http://arxiv.org/abs/math-ph/9911012.
Euler, L. Institutiones calculi integralis, Vol. 1. Basel, Switzerland: Birkhäuser, pp. 110-113, 1768.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities." Ramanujan J. 1, 431-448, 1997.
Lewin, L. "The Dilogarithm in Algebraic Fields." J. Austral. Math. Soc. (Ser. A) 33, 302-330, 1982.
Lewin, L. (Ed.). Structural Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.
Loxton, J. H. "Partition Identities and the Dilogarithm." Ch. 13 in Structural Properties of Polylogarithms (Ed. L. Lewin). Providence, RI: Amer. Math. Soc., pp. 287-299, 1991.
Rogers, L. J. "On Function Sum Theorems Connected with the Series ." Proc. London Math. Soc. 4, 169-189, 1907.
Watson, G. N. "A Note on Spence's Logarithmic Transcendent." Quart. J. Math. Oxford Ser. 8, 39-42, 1937.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|