المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

المشاكل الزوجية (1)
4-12-2021
التوزيع الفراغي Configuration
2-12-2017
من تعقيبات صلاة الظهر / من أدعية أمير المؤمنين (عليه السلام).
2023-06-11
Entire Function
18-11-2018
عام الحزن
28-3-2022
القانون الإداري في إنجلترا والولايات المتحدة الأمريكية
25-9-2018

Dawson,s Integral  
  
2443   04:22 مساءً   date: 30-7-2019
Author : Abramowitz, M. and Stegun, I. A
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 28-7-2019 2757
Date: 2-5-2019 1655
Date: 25-5-2019 2138

Dawson's Integral

DawsonsIntegral

Dawson's integral (Abramowitz and Stegun 1972, pp. 295 and 319), also sometimes called Dawson's function, is the entire function given by the integral

F(x) = e^(-x^2)int_0^xe^(y^2)dy

(1)

= 1/2sqrt(pi)e^(-x^2)erfi(x),

(2)

where erfi(x) is erfi, that arises in computation of the Voigt lineshape (Harris 1948, Hummer 1963, Sajo 1993, Lether 1997), in heat conduction, and in the theory of electrical oscillations in certain special vacuum tubes (McCabe 1974). It is commonly denoted F(x) (McCabe 1974; Coleman 1987; Milone and Milone 1988; Sajo 1993; Lether 1997; Press et al. 2007, p. 302), although Spanier and Oldham (1987) denote it by daw(x).

Dawson's integral is implemented in the Wolfram Language as DawsonF[z].

It is an odd function, so

 F(-x)=-F(x).

(3)

Its derivative is

 d/(dx)F(x)=1-2xF(x)

(4)

and its indefinite integral is

 intF(x)dx=1/2x^2_2F_2(1,1;3/2,2;-x^2),

(5)

where  is a generalized hypergeometric function.

It is the particular solution to the differential equation

(6)

(McCabe 1974).

Its Maclaurin series is given by

F(x) = sum_(n=0)^(infty)((-1)^n2^n)/((2n+1)!!)x^(2n+1)

(7)

= x-2/3x^3+4/(15)x^5-8/(105)x^7+...

(8)

(OEIS A122803 and A001147). If has the asymptotic series

 F(x)∼1/(2x)+1/(4x^3)+....

(9)

It also arises in the semi-integral of e^(-x) via

 D^(-1/2)e^(-x)=2/(sqrt(pi))F(sqrt(x))

(10)

(Spanier and Oldham 1987, p. 406).

It is given by the sums

F(x) = 1/2xsqrt(pi)sum_(k=0)^(infty)((-1)^kx^(2k))/(Gamma(k+3/2))

(11)

= xsum_(k=0)^(infty)((-1)^kx^(2k))/((3/2)_k)

(12)

(Spanier and Oldham 1987, p. 407), where Gamma(z) is the gamma function and (z)_k is a Pochhammer symbol.

Dawson's integral has continued fractions

F(z) = 1/(1+)(2z^2)/(3-)(4z^2)/(5+)(6z^2)/(7-)(8z^2)/(9+)...

(13)

= z/(1+2z^2-)(4z^2)/(3+2z^2-)(8z^2)/(5+2z^2-)(12z^2)/(7+2z^2-)...

(14)

(McCabe 1974).

DawsonPlusReImDawsonPlusContours

The plots above show the behavior of F(z) in the complex plane.

F has a maximum at , or

 1-sqrt(pi)e^(-x^2)xerfi(x)=0,

(15)

giving

 F(0.9241388730)=0.5410442246

(16)

(OEIS A133841 and A133842), and an inflection at , or

 -2x+sqrt(pi)e^(-x^2)(2x^2-1)erfi(x)=0,

(17)

giving

 F(1.5019752683)=0.4276866160

(18)

(OEIS A133843).

The function is sometimes generalized such that

 D_+/-(x)=e^(∓x^2)int_0^xe^(+/-y^2)dy,

(19)

giving

D_+(x) = 1/2sqrt(pi)e^(-x^2)erfi(x)

(20)

D_-(x) = 1/2sqrt(pi)e^(x^2)erf(x),

(21)

where erf(z) is the erf function and erfi(z) is the imaginary error function erfi.

DawsonMinusReImDawsonMinusContours

The plots above show the behavior of D_-(z) in the complex plane.

 


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 295 and 319, 1972.

Cody, W. J.; Pociorek, K. A.; and Thatcher, H. C. "Chebyshev Approximations for Dawson's Integral." Math. Comput. 24, 171-178, 1970.

Coleman, J. P. "Complex Polynomial Approximation by the Lanczos tau-Method: Dawson's Integral." J. Comput. Appl. Math. 20, 137-151, 1987.

Dawson, F. "On the Numerical Value of int_0^he^(x^2)dx." London Math. Soc. Proc. 29, 519-522, 1898.

Dijkstra, D. A. "A Continued Fraction Expansion for a Generalization of Dawson's Integral." Math. Comp. 31, 503-510, 1977.

Faddeyeva, V. N. and Terent'ev, N. M. Tables of Values of the Function w(z)=e^(-z^2)(1+2i/sqrtpiint_0^ze^(t^2)dt) for Complex Argument. New York: Pergamon Press, 1961.

Harris, D. III. "On the Line Absorption Coefficients Due to Doppler Effect and Damping." Astrophys. J. 108, 1120-115, 1948.

Hummer, D. G. "Noncoherent Scattering I. The Redistribution Functions with Doppler Broadening." Monthly Not. Roy. Astron. Soc. 125, 21-37, 1963.

Hummer, D. G. "Expansion of Dawson's Function in a Series of Chebyshev Polynomials." Math. Comput. 18, 317-319, 1964.

Lether, F. G. "Elementary Approximations for Dawson's Integral." J. Quant. Spectros. Radiat. Transfer 4, 343-345, 1991.

Lether, F. G. "Constrained Near-Minimax Rational Approximations to Dawson's Integral." Appl. Math. Comput. 88, 267-274, 1997.

Lohmander, B. and Rittsten, S. "Table of the Function y=e^(-x^2)int_0^xe^(t^2)dt." Kungl. Fysiogr. Sällsk. i Lund Föhr. 28, 45-52, 1958.

Luke, Y. L. The Special Functions and their Approximations, Vol. 2. New York: Academic Press, 1969.

McCabe, J. H. "A Continued Fraction Expansion with a Truncation Error Estimate for Dawson's Integral." Math. Comput. 28, 811-816, 1974.

Milone, L. A. and Milone, A. A. E. "Evaluation of Dawson's Function." Astrophys. Space Sci. 147, 189-191, 1988.

Moshier, S. L. Methods and Programs for Mathematical Functions. Chichester, England: Ellis Horwood, 1989.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Dawson's Integral." §6.10 in Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge, England: Cambridge University Press, pp. 302-304, 2007.

Rosser, J. B. "Theory and Application of int_0^ze^(-x^2)dx and int_0^ze^(-p^2y^2)dy." Brooklyn, NY: Mapleton House, 1948.

Rybicki, G. B. "Dawson's Integral and the Sampling Theorem." Computers in Physics 3, 85-87, 1989.

Sajo, E. "On the Recursive Properties of Dawson's Integral." J. Phys. A 26, 2977-2987, 1993.

Sloane, N. J. A. Sequences A001147/M3002, A122803, A133841, A133842, and A133843 in "The On-Line Encyclopedia of Integer Sequences."

Spanier, J. and Oldham, K. B. "Dawson's Integral." Ch. 42 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 405-410, 1987.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.