Read More
Date: 14-8-2019
2456
Date: 17-6-2019
1628
Date: 30-9-2019
1478
|
The hyperbolic sine is defined as
(1) |
The notation is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram Language as Sinh[z].
Special values include
(2) |
|||
(3) |
where is the golden ratio.
The value
(4) |
(OEIS A073742) has Engel expansion 1, 6, 20, 42, 72, 110, ... (OEIS A068377), which has closed form for .
The derivative is given by
(5) |
where is the hyperbolic cosine, and the indefinite integral by
(6) |
where is a constant of integration.
has the Taylor series
(7) |
|||
(8) |
(OEIS A009445).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jeffrey, A. "Hyperbolic Identities." §2.5 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 117-122, 2000.
Sloane, N. J. A. Sequences A009445, A068377, and A073742 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Hyperbolic Sine and Cosine Functions." Ch. 28 in An Atlas of Functions.Washington, DC: Hemisphere, pp. 263-271, 1987.
Zwillinger, D. (Ed.). "Hyperbolic Functions." §6.7 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 476-481 1995.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|