Read More
Date: 19-5-2018
![]()
Date: 27-4-2018
![]()
Date: 1-9-2019
![]() |
![]() |
![]() |
The hyperbolic secant is defined as
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z].
On the real line, it has a maximum at and inflection points at
(OEIS A091648). It has a fixed point at
(OEIS A069814).
The derivative is given by
![]() |
(3) |
where is the hyperbolic tangent, and the indefinite integral by
![]() |
(4) |
where is a constant of integration.
has the Taylor series
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A046976 and A046977), where is an Euler number and
is a factorial.
Equating coefficients of ,
, and
in the Ramanujan cos/cosh identity
![]() |
(7) |
gives the amazing identities
![]() |
(8) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.
Jeffrey, A. "Hyperbolic Identities." §2.5 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 117-122, 2000.
Sloane, N. J. A. Sequences A046976, A046977, A069814, and A091648 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Hyperbolic Secant and Cosecant
Functions." Ch. 29 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 273-278, 1987.
Zwillinger, D. (Ed.). "Hyperbolic Functions." §6.7 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 476-481 1995.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|