Heaviside Step Function					
				 
				
					
						
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						25-5-2019
					
					
						
						3504					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Heaviside Step Function
The Heaviside step function is a mathematical function denoted 
, or sometimes 
 or 
 (Abramowitz and Stegun 1972, p. 1020), and also known as the "unit step function." The term "Heaviside step function" and its symbol can represent either a piecewise constant function or a generalized function.
 

 
When defined as a piecewise constant function, the Heaviside step function is given by
	
		
			 {0   x<0; 1/2   x=0; 1   x>0 " src="http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/NumberedEquation1.gif" style="height:70px; width:115px" /> | 
			
			 (1) 
			 | 
		
	
(Abramowitz and Stegun 1972, p. 1020; Bracewell 2000, p. 61). The plot above shows this function (left figure), and how it would appear if displayed on an oscilloscope (right figure).
When defined as a generalized function, it can be defined as a function 
 such that
	
		
			  | 
			
			 (2) 
			 | 
		
	
for 
 the derivative of a sufficiently smooth function 
 that decays sufficiently quickly (Kanwal 1998).
The Wolfram Language represents the Heaviside generalized function as HeavisideTheta, while using UnitStep to represent the piecewise function Piecewise[
{" src="http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/Inline7.gif" style="height:15px; width:5px" />
{" src="http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/Inline8.gif" style="height:15px; width:5px" />1, x >= 0
}" src="http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/Inline9.gif" style="height:15px; width:5px" />
}" src="http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/Inline10.gif" style="height:15px; width:5px" />] (which, it should be noted, adopts the convention 
 instead of the conventional definition 
).
The shorthand notation
	
		
			  | 
			
			 (3) 
			 | 
		
	
is sometimes also used.
The Heaviside step function is related to the boxcar function by
	
		
			  | 
			
			 (4) 
			 | 
		
	
and can be defined in terms of the sign function by
	
		
			![H(x)=1/2[1+sgn(x)].](http://mathworld.wolfram.com/images/equations/HeavisideStepFunction/NumberedEquation5.gif)  | 
			
			 (5) 
			 | 
		
	
The derivative of the step function is given by
	
		
			  | 
			
			 (6) 
			 | 
		
	
where 
 is the delta function (Bracewell 2000, p. 97).
The Heaviside step function is related to the ramp function 
 by
	
		
			  | 
			
			 (7) 
			 | 
		
	
and to the derivative of 
 by
	
		
			  | 
			
			 (8) 
			 | 
		
	
The two are also connected through
	
		
			  | 
			
			 (9) 
			 | 
		
	
where 
 denotes convolution.
Bracewell (2000) gives many identities, some of which include the following. Letting 
 denote the convolution,
	
		
			  | 
			
			 (10) 
			 | 
		
	
In addition,

The Heaviside step function can be defined by the following limits,
where 
 is the erfc function, 
 is the sine integral, 
 is the sinc function, and 
 is the one-argument triangle function. The first four of these are illustrated above for 
, 0.1, and 0.01.
Of course, any monotonic function with constant unequal horizontal asymptotes is a Heaviside step function under appropriate scaling and possible reflection. The Fourier transform of the Heaviside step function is given by
where 
 is the delta function.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Bracewell, R. "Heaviside's Unit Step Function, 
." The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, pp. 61-65, 2000.
Kanwal, R. P. Generalized Functions: Theory and Technique, 2nd ed. Boston, MA: Birkhäuser, 1998.
Spanier, J. and Oldham, K. B. "The Unit-Step 
 and Related Functions." Ch. 8 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 63-69, 1987.
				
				
					
					
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة