Read More
Date: 25-3-2019
3954
Date: 12-8-2018
1731
Date: 25-4-2018
2266
|
The "complete" gamma function can be generalized to the incomplete gamma function such that . This "upper" incomplete gamma function is given by
(1) |
For an integer
(2) |
|||
(3) |
where is the exponential sum function. It is implemented as Gamma[a, z] in the Wolfram Language.
The special case of can be expressed in terms of the subfactorial as
(4) |
The incomplete gamma function has continued fraction
(5) |
(Wall 1948, p. 358).
The lower incomplete gamma function is given by
(6) |
|||
(7) |
|||
(8) |
where is the confluent hypergeometric function of the first kind. For an integer ,
(9) |
|||
(10) |
It is implemented as Gamma[a, 0, z] in the Wolfram Language.
By definition, the lower and upper incomplete gamma functions satisfy
(11) |
The exponential integral is closely related to the incomplete gamma function by
(12) |
Therefore, for real ,
(13) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
Arfken, G. "The Incomplete Gamma Function and Related Functions." §10.5 in Mathematical Methods for Physicists, 3rd ed.Orlando, FL: Academic Press, pp. 565-572, 1985.
Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|