 
					
					
						Incomplete Gamma Function					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 22-5-2019
						22-5-2019
					
					
						 2259
						2259					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Incomplete Gamma Function
 
The "complete" gamma function  can be generalized to the incomplete gamma function
 can be generalized to the incomplete gamma function  such that
 such that  . This "upper" incomplete gamma function is given by
. This "upper" incomplete gamma function is given by
	
		
			|  | (1) | 
	
For  an integer
 an integer 
where  is the exponential sum function. It is implemented as Gamma[a, z] in the Wolfram Language.
 is the exponential sum function. It is implemented as Gamma[a, z] in the Wolfram Language.
The special case of  can be expressed in terms of the subfactorial
 can be expressed in terms of the subfactorial  as
 as
	
		
			|  | (4) | 
	
The incomplete gamma function  has continued fraction
 has continued fraction
	
		
			|  | (5) | 
	
(Wall 1948, p. 358).
The lower incomplete gamma function is given by
where  is the confluent hypergeometric function of the first kind. For
 is the confluent hypergeometric function of the first kind. For  an integer
 an integer  ,
,
It is implemented as Gamma[a, 0, z] in the Wolfram Language.
By definition, the lower and upper incomplete gamma functions satisfy
	
		
			|  | (11) | 
	
The exponential integral  is closely related to the incomplete gamma function
 is closely related to the incomplete gamma function  by
 by
	
		
			| ![Gamma(0,z)=-Ei(-z)+1/2[ln(-z)-ln(-1/z)]-lnz.](http://mathworld.wolfram.com/images/equations/IncompleteGammaFunction/NumberedEquation5.gif) | (12) | 
	
Therefore, for real  ,
,
	
		
			| ![Gamma(0,x)=<span style=]() {-Ei(-x)-ipi   for x<0; -Ei(-x)   for x>0. " src="http://mathworld.wolfram.com/images/equations/IncompleteGammaFunction/NumberedEquation6.gif" style="height:41px; width:217px" /> | (13) | 
	
 
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
Arfken, G. "The Incomplete Gamma Function and Related Functions." §10.5 in Mathematical Methods for Physicists, 3rd ed.Orlando, FL: Academic Press, pp. 565-572, 1985.
Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة