 
					
					
						Gudermannian					
				 
				
					
						 المؤلف:  
						Beyer, W. H.
						 المؤلف:  
						Beyer, W. H. 					
					
						 المصدر:  
						"Gudermannian Function." CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
						 المصدر:  
						"Gudermannian Function." CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 2-5-2019
						2-5-2019
					
					
						 1861
						1861					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Gudermannian
 
The Gudermannian function is the odd function denoted either  or
 or  which arises in the inverse equations for the Mercator projection.
 which arises in the inverse equations for the Mercator projection.  expresses the latitude
 expresses the latitude  in terms of the vertical position
 in terms of the vertical position  in this projection, so the Gudermannian function is defined by
 in this projection, so the Gudermannian function is defined by
For real  , this definition is also equal to
, this definition is also equal to
The Gudermannian is implemented in the Wolfram Language as Gudermannian[z].
The derivative of the Gudermannian is
	
		
			|  | (5) | 
	
and its indefinite integral is
	
		
			| ![intgd(z)dz=-1/2pix+i[Li_2(-ie^x)-Li_2(ie^x)],](http://mathworld.wolfram.com/images/equations/Gudermannian/NumberedEquation2.gif) | (6) | 
	
where  is the dilogarithm.
 is the dilogarithm.
It has Maclaurin series
	
		
			|  | (7) | 
	
(OEIS A091912 and A136606).
The Gudermannian connects the trigonometric and hyperbolic functions via
The Gudermannian is related to the exponential function by
(Beyer 1987, p. 164; Zwillinger 1995, p. 485).
Other fundamental identities are
	
		
			|  | (17) | 
	
	
		
			|  | (18) | 
	
(Zwillinger 1995, p. 485).
If  , then
, then
(Beyer 1987, p. 164; Zwillinger 1995, p. 530), where the last identity has been corrected.
An additional identity is given by
	
		
			|  | (23) | 
	
(M. Somos, pers. comm., Apr. 15, 2006).
The Gudermannian function can also be extended to the complex plane, as illustrated above.
 
REFERENCES:
Beyer, W. H. "Gudermannian Function." CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 164, 1987.
Robertson, J. S. "Gudermann and the Simple Pendulum." College Math. J. 28, 271-276, 1997.
Sloane, N. J. A. Sequences A091912 and A136606 in "The On-Line Encyclopedia of Integer Sequences."
Zwillinger, D. (Ed.). "Gudermannian Function." §6.9 in CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: CRC Press, pp. 530-532, 1995.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة