Read More
Date: 21-9-2018
2150
Date: 21-9-2018
1280
Date: 10-10-2019
1731
|
A Bessel function of the second kind (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted (e.g, Gradshteyn and Ryzhik 2000, p. 657, eqn. 6.518), is a solution to the Bessel differential equationwhich is singular at the origin. Bessel functions of the second kind are also called Neumann functions or Weber functions. The above plot shows for , 1, 2, ..., 5. The Bessel function of the second kind is implemented in the Wolfram Language as BesselY[nu, z].
Let be the first solution and be the other one (since the Bessel differential equation is second-order, there are two linearly independent solutions). Then
(1) |
|||
(2) |
Take (1) minus (2),
(3) |
(4) |
so , where is a constant. Divide by ,
(5) |
(6) |
Rearranging and using gives
(7) |
|||
(8) |
where is the so-called Bessel function of the second kind.
can be defined by
(9) |
(Abramowitz and Stegun 1972, p. 358), where is a Bessel function of the first kind and, for an integer by the series
(10) |
where is the digamma function (Abramowitz and Stegun 1972, p. 360).
The function has the integral representations
(11) |
|||
(12) |
(Abramowitz and Stegun 1972, p. 360).
Asymptotic series are
(13) |
|||
(14) |
where is a gamma function.
For the special case , is given by the series
(15) |
(Abramowitz and Stegun 1972, p. 360), where is the Euler-Mascheroni constant and is a harmonic number.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Bessel Functions and ." §9.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 358-364, 1972.
Arfken, G. "Neumann Functions, Bessel Functions of the Second Kind, ." §11.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 596-604, 1985.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 625-627, 1953.
Spanier, J. and Oldham, K. B. "The Neumann Function ." Ch. 54 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 533-542, 1987.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|