تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Variation of Argument
المؤلف:
Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D
المصدر:
"Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113
الجزء والصفحة:
77-83
17-11-2018
593
Variation of Argument
Let denote the change in the complex argument of a function
around a contour
. Also let
denote the number of roots of
in
and
denote the sum of the orders of all poles of
lying inside
. Then
![]() |
(1) |
For example, the plots above shows the argument for a small circular contour centered around
for a function of the form
(which has a single pole of order
and no roots in
) for
, 2, and 3.
Note that the complex argument must change continuously, so any "jumps" that occur as the contour crosses branch cuts must be taken into account.
To find in a given region
, break
into paths and find
for each path. On a circular arc
![]() |
(2) |
let be a polynomial
of degree
. Then
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Plugging in gives
![]() |
(5) |
So as ,
![]() |
(6) |
![]() |
(7) |
and
![]() |
(8) |
For a real segment ,
![]() |
(9) |
For an imaginary segment ,
(10) |
REFERENCES:
Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D. "Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113, 77-83, 1991.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
