Read More
Date: 11-12-2018
![]()
Date: 27-11-2018
![]()
Date: 14-10-2018
![]() |
Let denote the change in the complex argument of a function
around a contour
. Also let
denote the number of roots of
in
and
denote the sum of the orders of all poles of
lying inside
. Then
![]() |
(1) |
For example, the plots above shows the argument for a small circular contour centered around
for a function of the form
(which has a single pole of order
and no roots in
) for
, 2, and 3.
Note that the complex argument must change continuously, so any "jumps" that occur as the contour crosses branch cuts must be taken into account.
To find in a given region
, break
into paths and find
for each path. On a circular arc
![]() |
(2) |
let be a polynomial
of degree
. Then
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Plugging in gives
![]() |
(5) |
So as ,
![]() |
(6) |
![]() |
(7) |
and
![]() |
(8) |
For a real segment ,
![]() |
(9) |
For an imaginary segment ,
![]() |
(10) |
REFERENCES:
Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D. "Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113, 77-83, 1991.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|