 
					
					
						Cauchy Integral Formula					
				 
				
					
						 المؤلف:  
						Krantz, S. G.
						 المؤلف:  
						Krantz, S. G.					
					
						 المصدر:  
						"The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser
						 المصدر:  
						"The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 17-11-2018
						17-11-2018
					
					
						 2120
						2120					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Cauchy Integral Formula

Cauchy's integral formula states that
	
		
			|  | (1) | 
	
where the integral is a contour integral along the contour  enclosing the point
 enclosing the point  .
.
It can be derived by considering the contour integral
	
		
			|  | (2) | 
	
defining a path  as an infinitesimal counterclockwise circle around the point
 as an infinitesimal counterclockwise circle around the point  , and defining the path
, and defining the path  as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel each other out) so as to go around
 as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel each other out) so as to go around  . The total path is then
. The total path is then
	
		
			|  | (3) | 
	
so
	
		
			|  | (4) | 
	
From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. Therefore, the first term in the above equation is 0 since  does not enclose the pole, and we are left with
 does not enclose the pole, and we are left with
	
		
			|  | (5) | 
	
Now, let  , so
, so  . Then
. Then
But we are free to allow the radius  to shrink to 0, so
 to shrink to 0, so
giving (1).
If multiple loops are made around the point  , then equation (11) becomes
, then equation (11) becomes
	
		
			|  | (12) | 
	
where  is the contour winding number.
 is the contour winding number.
A similar formula holds for the derivatives of  ,
,
Iterating again,
	
		
			|  | (18) | 
	
Continuing the process and adding the contour winding number  ,
,
	
		
			|  | (19) | 
	
 
REFERENCES:
Arfken, G. "Cauchy's Integral Formula." §6.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 371-376, 1985.
Kaplan, W. "Cauchy's Integral Formula." §9.9 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 598-599, 1991.
Knopp, K. "Cauchy's Integral Formulas." Ch. 5 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 61-66, 1996.
Krantz, S. G. "The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 26-29, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 367-372, 1953.
Woods, F. S. "Cauchy's Theorem." §146 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA: Ginn, pp. 352-353, 1926.
				
				
					
					 الاكثر قراءة في  التحليل العقدي
					 الاكثر قراءة في  التحليل العقدي 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة