تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Moat-Crossing Problem
المؤلف:
Cook, M
المصدر:
Update on the Moat Crossing Problem." E-mail communication, 1997. http://www.mathcad.com/library/LibraryContent/puzzles/soln26/8b/update.html.
الجزء والصفحة:
...
24-10-2018
700
Moat-Crossing Problem
There are two versions of the moat-crossing problem, one geometric and one algebraic. The geometric moat problems asks for the widest moat Rapunzel can cross to escape if she has only two unit-length boards (and no means to nail or otherwise attach them together). More generally, what is the widest moat which can be crossed using boards? Matthew Cook has conjectured that the asymptotic solution to this problem is
(Cook 1997).
The algebraic moat-crossing problem asks if it is possible to walk to infinity on the real line using only steps of bounded lengths and steps on the prime numbers. The answer is negative (Gethner et al. 1998). However, the Gaussian moat problem that asks whether it is possible to walk to infinity in the Gaussian integers using the Gaussian primes as stepping stones and taking steps of bounded length is unresolved. Gethner et al. (1998) show that a moat of width exists.
REFERENCES:
Cook, M. "Update on the Moat Crossing Problem." E-mail communication, 1997. http://www.mathcad.com/library/LibraryContent/puzzles/soln26/8b/update.html.
Finch, S. "Moat Crossing Optimization Problem." http://www.mathcad.com/library/LibraryContent/puzzles/soln26/soln26.html.
Gethner, E. and Stark, H. M. "Periodic Gaussian Moats." Experiment. Math. 6, 251-254, 1997.
Gethner, E.; Wagon, S.; and Wick, B. "A Stroll Through the Gaussian Primes." Amer. Math. Monthly 105, 327-337, 1998.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.
Haugland, J. K. "A Walk on Complex Primes." [Norwegian.] Normat 43, 168-170, 1995.
Jordan, J. H. and Rabung, J. R. "A Conjecture of Paul Erdős Concerning Gaussian Primes." Math. Comput. 24, 221-223, 1970.
Montgomery, H. Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. Providence, RI: Amer. Math. Soc., 1994.
Vardi, I. "Prime Percolation." Experiment. Math. 7, 275-289, 1998.
Wagon, S. Mathematica in Action, 2nd ed. New York: Springer-Verlag, 1999.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
