Read More
Date: 1-11-2018
280
Date: 17-11-2018
393
Date: 23-11-2018
438
|
A Gaussian integer is a complex number where and are integers. The Gaussian integers are members of the imaginary quadratic field and form a ring often denoted , or sometimes (Hardy and Wright 1979, p. 179). The sum, difference, and product of two Gaussian integers are Gaussian integers, but only if there is an such that
(1) |
(Shanks 1993).
Gaussian integers can be uniquely factored in terms of other Gaussian integers (known as Gaussian primes) up to powers of and rearrangements.
The units of are and .
One definition of the norm of a Gaussian integer is its complex modulus
(2) |
Another common definition (e.g., Herstein 1975; Hardy and Wright 1979, p. 182; Artin 1991; Dummit and Foote 2004) defines the norm of a Gaussian integer to be
(3) |
the square of the above quantity. (Note that the Gaussian integers form a Euclidean ring, which is what makes them particularly of interest, only under the latter definition.) Because of the two possible definitions, caution is needed when consulting the literature.
The probability that two Gaussian integers and are relatively prime is
(4) |
(OEIS A088454), where is Catalan's constant (Pegg; Collins and Johnson 1989; Finch 2003, p. 601).
Every Gaussian integer is within of a multiple of a Gaussian integer .
The plots above show roots of the Gaussian integers for various rational values of (Trott 2004, p. 24).
REFERENCES:
Artin, M. Algebra. Englewood Cliffs, NJ: Prentice-Hall, 1991.
Collins, G. E. and Johnson, J. R. "The Probability of Relative Primality of Gaussian Integers." Proc. 1988 Internat. Sympos. Symbolic and Algebraic Computation (ISAAC), Rome (Ed. P. Gianni). New York: Springer-Verlag, pp. 252-258, 1989.
Conway, J. H. and Guy, R. K. "Gauss's Whole Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 217-223, 1996.
Dummit, D. S. and Foote, R. M. Abstract Algebra, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.
Hardy, G. H. and Wright, E. M. "The Rational Integers, the Gaussian Integers, and the Integers of " and "Properties of the Gaussian Integers." §12.2 and 12.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 178-180 and 182-183, 1979.
Herstein, I. N. Topics in Algebra, 2nd ed. New York: Springer-Verlag, 1975.
Pegg, E. Jr. "The Neglected Gaussian Integers." http://www.mathpuzzle.com/Gaussians.html.
Séroul, R. "The Gaussian Integers." §9.1 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 225-234, 2000.
Shanks, D. "Gaussian Integers and Two Applications." §50 in Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 149-151, 1993.
Sloane, N. J. A. Sequence A088454 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|