تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Curvature
المؤلف:
Casey, J
المصدر:
Exploring Curvature. Wiesbaden, Germany: Vieweg, 1996.
الجزء والصفحة:
...
29-9-2018
3186
Curvature
In general, there are two important types of curvature: extrinsic curvature and intrinsic curvature. The extrinsic curvature of curves in two- and three-space was the first type of curvature to be studied historically, culminating in the Frenet formulas, which describe a space curve entirely in terms of its "curvature," torsion, and the initial starting point and direction.
After the curvature of two- and three-dimensional curves was studied, attention turned to the curvature of surfaces in three-space. The main curvatures that emerged from this scrutiny are the mean curvature, Gaussian curvature, and the shape operator. Mean curvature was the most important for applications at the time and was the most studied, but Gauss was the first to recognize the importance of the Gaussian curvature.
Because Gaussian curvature is "intrinsic," it is detectable to two-dimensional "inhabitants" of the surface, whereas mean curvature and the shape operator are not detectable to someone who can't study the three-dimensional space surrounding the surface on which he resides. The importance of Gaussian curvature to an inhabitant is that it controls the surface area of spheres around the inhabitant.
Riemann and many others generalized the concept of curvature to sectional curvature, scalar curvature, the Riemann tensor, Ricci curvature tensor, and a host of other intrinsic and extrinsic curvatures. General curvatures no longer need to be numbers, and can take the form of a map, group, groupoid, tensor field, etc.
The simplest form of curvature and that usually first encountered in calculus is an extrinsic curvature. In two dimensions, let a plane curve be given by Cartesian parametric equations and
. Then the curvature
, sometimes also called the "first curvature" (Kreyszig 1991, p. 47), is defined by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where is the tangential angle and
is the arc length. As can readily be seen from the definition, curvature therefore has units of inverse distance. The
derivative in the above equation can be found using the identity
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
so
![]() |
(8) |
and
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
Combining equations (◇), 3), (10), and (12) then gives
![]() |
(13) |
For a two-dimensional curve written in the form , the equation of curvature becomes
![]() |
(14) |
If the two-dimensional curve is instead parameterized in polar coordinates, then
![]() |
(15) |
where (Gray 1997, p. 89). In pedal coordinates, the curvature is given by
![]() |
(16) |
The curvature for a two-dimensional curve given implicitly by is given by
![]() |
(17) |
(Gray 1997).
Now consider a parameterized space curve in three dimensions for which the tangent vector
is defined as
![]() |
(18) |
Therefore,
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
where is the normal vector. But
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
so taking norms of both sides gives
![]() |
(24) |
Solving for then gives
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
(Gray 1997, p. 192).
The curvature of a two-dimensional curve is related to the radius of curvature of the curve's osculating circle. Consider a circlespecified parametrically by
![]() |
(28) |
![]() |
(29) |
which is tangent to the curve at a given point. The curvature is then
![]() |
(30) |
or one over the radius of curvature. The curvature of a circle can also be repeated in vector notation. For the circle with , the arc length is
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
so and the equations of the circle can be rewritten as
![]() |
(34) |
![]() |
(35) |
The radius vector is then given by
![]() |
(36) |
and the tangent vector is
![]() |
![]() |
![]() |
(37) |
![]() |
![]() |
![]() |
(38) |
so the curvature is related to the radius of curvature by
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
![]() |
![]() |
![]() |
(42) |
as expected.
Four very important derivative relations in differential geometry related to the Frenet formulas are
![]() |
![]() |
![]() |
(43) |
![]() |
![]() |
![]() |
(44) |
![]() |
![]() |
![]() |
(45) |
![]() |
![]() |
![]() |
(46) |
where is the tangent vector,
is the normal vector,
is the binormal vector, and
is the torsion (Coxeter 1969, p. 322).
The curvature at a point on a surface takes on a variety of values as the plane through the normal varies. As varies, it achieves a minimum and a maximum (which are in perpendicular directions) known as the principal curvatures. As shown in Coxeter (1969, pp. 352-353),
![]() |
(47) |
![]() |
(48) |
where is the Gaussian curvature,
is the mean curvature, and det denotes the determinant.
The curvature is sometimes called the first curvature and the torsion
the second curvature. In addition, a third curvature(sometimes called total curvature)
![]() |
(49) |
is also defined. A signed version of the curvature of a circle appearing in the Descartes circle theorem for the radius of the fourth of four mutually tangent circles is called the bend.
REFERENCES:
Casey, J. Exploring Curvature. Wiesbaden, Germany: Vieweg, 1996.
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, 1969.
Fischer, G. (Ed.). Plates 79-85 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, pp. 74-81, 1986.
Gray, A. "Curvature of Curves in the Plane," "Drawing Plane Curves with Assigned Curvature," and "Drawing Space Curves with Assigned Curvature." §1.5, 6.4, and 10.2 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 14-17, 140-146, and 222-224, 1997.
Kreyszig, E. "Principal Normal, Curvature, Osculating Circle." §12 in Differential Geometry. New York: Dover, pp. 34-36, 1991.
Yates, R. C. "Curvature." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 60-64, 1952.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
