تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Reuleaux Tetrahedron
المؤلف:
Encyclopedia Geometrica. "3D Reuleaux
المصدر:
Encyclopedia Geometrica. "3D Reuleaux
الجزء والصفحة:
...
25-8-2018
2172
Reuleaux Tetrahedron
![]() |
![]() |
The Reuleaux tetrahedron, sometimes also called the spherical tetrahedron, is the three-dimensional solid common to four spheres of equal radius placed so that the center of each sphere lies on the surface of the other three. The centers of the spheres are therefore located at the vertices of a regular tetrahedron, and the solid consists of an "inflated" tetrahedron with four curved edges.
Note that the name, coined here for the first time, is based on the fact that the geometric shape is the three-dimensional analog of the Reuleaux triangle, not the fact that it has constant width. In fact, the Reuleaux tetrahedron is not a solid of constant width. However, Meißner (1911) showed how to modify the Reuleaux tetrahedron to form a surface of constant width by replacing three of its edge arcs by curved patches formed as the surfaces of rotation of a circular arc. Depending on which three edge arcs are replaced (three that have a common vertex or three that form a triangle), one of two noncongruent shapes can be produced that are sometimes called Meissner tetrahedra (Lachand-Robert and Oudet 2007).
To analyze the Reuleaux tetrahedron, fix a tetrahedron of unit edge length with its vertices at the points ,
,
, and
. Simultaneously solving the equations of three of four spheres for
and
as a function of
then gives
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Half an arc is traced out as passes from
to
, and
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
so the arc length of the curves connecting the vertices is given by
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Making a change of coordinates,
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
Using the Gauss-Bonnet formula gives surface area as
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
(OEIS A202473; Harbourne).
The volume is significantly trickier to calculate analytically. Set up spherical coordinates from the centroid of the tetrahedron, so that the distance from the bottom vertex to the radius vector is 1, i.e.,
![]() |
(12) |
which simplifies to
![]() |
(13) |
giving
![]() |
(14) |
By symmetry, the volume of the Reuleaux tetrahedron is given by
![]() |
(15) |
The integral over can be done immediately,
![]() |
(16) |
Now parameterize the top right edge as a function of the azimuthal coordinate as
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
The polar angle can then be solved for as a function of
as
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
The integral over can be done by making the change of coordinates
![]() |
(22) |
giving
![]() |
(23) |
Making the change of variables
![]() |
(24) |
then gives the volume as
![]() |
(25) |
This integral can be done analytically using computer algebra, but the analytic form returned by symbolic algebra programs is a complicated expression involving logarithms and inverse tangent functions.
However, a much simpler approach using the surface area combined with some straightforward geometry gives the fully simplified form almost immediately as
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
(OEIS A102888; Harbourne).
REFERENCES:
Encyclopedia Geometrica. "3D Reuleaux." http://www.fastgeometry.com/Reuleaux/ConstantBreadth3DShapes.htm.
Harbourne, B. "Volume and Surface Area of the Spherical Tetrahedron (AKA Reuleaux Tetrahedron) by Geometrical Methods." http://www.math.unl.edu/~bharbourne1/ST/sphericaltetrahedron.html.
Lachand-Robert, T. and Oudet, É. "Bodies of Constant Width in Arbitrary Dimension." Math. Nachr. 280, 740-750, 2007.
Meissner, F. "Über Punktmengen konstanter Breite." Vierteljahresschr. naturforsch. Ges. Zürich 56, 42-50, 1911.
Sloane, N. J. A. Sequences A102888 and A202473 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
