تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Selections
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
25-27
5-2-2016
1404
Suppose you are giving a party, and you want to order three different pizzas from a list of 12 types that your local store sells. How many ways can you make your choice? If you were to list the three types, starting with your first choice, then the second, and finally the third, there would be 12 possible first choices, 11 second
(you want different types, so no repeats are allowed), and 10 third. So the number of ways is 12×11×10 = 1320. Essentially, you are calculating P(12,3). But there would be six possible lists that give the same set of three pizzas, in different order.
So there are really 1320/6 = 220 possible choices.
Essentially, you are calculating the number of possible sets of three types of pizza you could choose from a set of 12 types. There are a number of situations similar to this: given a set S, we want to know how many different subsets of a given size are contained in S. These are called selections or combinations. We shall write C(s,k) or (sk) for the number of different k-subsets of an s-set; it is usual to read the symbol as “s choose k.” (sk) is often called the choice function (of s and k).
P(s,k) = s!/(s−k)!. (1.1)
We can use the formula (1.1) to derive expressions for the numbers C(s,k).
Suppose S is a set with s elements. It is clear that every k-set that we choose from S gives rise to exactly k! distinct k-sequences on S and that the same k-sequence never arises from different k-sets. So the number of k-sequences on S is k! times the number of k-sets on S, or
(1.2)
When calculating (sk) in practice, you would usually calculate P(s,k), then divide by k!. So
There are k factors in the denominator and in the numerator.
We agreed to say 0! = 1. In combination with (1.2) this yields (s0) = 1. This makes sense: it is possible to choose no elements from a set, but one cannot imagine different ways of doing so. We also define (sk) = 0 if k > s. Again this makes sense—
there is no way to choose more than s elements from an s-set.
Sample Problem 1.1 Calculate C(8,5) and (66).
Solution.
C(8,5) = 8×7×6×5×4/5×4×3×2×1 = 56.
(66)= 6!/ 0!×6! = 1.
There is no need for calculation: the terms 6! in the numerator and denominator cancel.
Sample Problem 1.2 A student must answer five of the eight questions on a test. How many different ways can she answer, assuming there is no restriction on her choice and the order in which she answers them is unimportant?
Solution. (85)= 56 ways.
Sample Problem 1.3 Computers read strings consisting of the digits 0 and 1.
Such a string with k entries is called a k-bit string. How many 8-bit strings are there that contain exactly five 1s?
Solution. To specify a string, it is sufficient to say which positions have 1s. There are C(8,5) choices, so the answer is C(8,5) = 56
Sample Problem 1.4 How many ways can a committee of three men and two women be chosen from six men and four women?
Solution. The three men can be chosen in (63) ways; the two women can be chosen in (42) ways. Using the multiplication principle, the total number of committees possible with no restrictions is
Sample Problem 1.5 How many different “words” of five letters can you make from the letters of the word REPUBLICAN, if every word must contain two different vowels and three different consonants?
Solution. The three consonants can be chosen in(63) = 20 ways, and the vowels In(42) = 6 ways. After the choice is made, the letters can be arranged in 5! = 120 ways. So there are 20×6×120 = 14400 “words.”