تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Carpenter
المؤلف:
Huth, Harry C., and Mark W. Huth
المصدر:
Practical Problems in Mathematics for Carpenters
الجزء والصفحة:
...
5-1-2016
928
Whether constructing houses or building furniture or cabinets, carpenters spend a good portion of their time as mathematicians, particularly geometers. Before starting work on a project, they have to be able to calculate the correct amount of materials they need. Once work begins, they have to measure materials accurately, and calculate lengths, areas, angles, etc., to create a finished product.
Sometimes the mathematics that carpenters use is relatively easy. Using simple arithmetic, a carpenter can, for example, calculate the number of twoby-four studs needed in a wall of a given length when the studs are 16 inches apart, being sure to include the extra two-by-fours needed around doors and windows and at the top and bottom of the wall.
Sometimes, though, the mathematics of carpentry is more complicated. A carpenter building a staircase, for example, is faced with the difficult problem of making sure that each step is the same width, that the rise of each step is the same, and that the stairway fits into the space available without being too steep or too shallow. Similarly, in building a roof, a carpenter has to calculate the slope of the roof accurately, and then cut materials to make sure they conform to the slope and fit precisely.
Fortunately, carpenters have tools to help with these types of mathematical problems. One is a carpenter’s square, which is a right-angle ruler with calibrations that measures angles. The other is a construction calculator, which is programmed to solve construction problems and gives measurements in eighths and sixteenths of inches rather than in decimals.
______________________________________________________________________________________________
Reference
Huth, Harry C., and Mark W. Huth. Practical Problems in Mathematics for Carpenters, 7th ed. Albany: Delmar/Thomson Learning, 2001.
Webster, Alfred P., and Kathryn Bright Judy. Mathematics for Carpentry and the Construction Trades, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.