 
					
					
						Anisohedral Tiling					
				 
				
					
						 المؤلف:  
						Klee, V. and Wagon, S.
						 المؤلف:  
						Klee, V. and Wagon, S.					
					
						 المصدر:  
						Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.
						 المصدر:  
						Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 23-2-2022
						23-2-2022
					
					
						 1271
						1271					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Anisohedral Tiling
A plane tiling is said to be isohedral if the symmetry group of the tiling acts transitively on the tiles, and  -isohedral if the tiles fall into n orbits under the action of the symmetry group of the tiling. A
-isohedral if the tiles fall into n orbits under the action of the symmetry group of the tiling. A  -anisohedral tiling is a tiling which permits no
-anisohedral tiling is a tiling which permits no  -isohedral tiling with
-isohedral tiling with  .
.

The numbers of anisohedral polyominoes with  , 9, 10, ... are 1, 9, 44, 108, 222, ... (OEIS A075206), the first few of which are illustrated above (Myers).
, 9, 10, ... are 1, 9, 44, 108, 222, ... (OEIS A075206), the first few of which are illustrated above (Myers).
REFERENCES
Berglund, J. "Is There a  -Anisohedral Tile for
-Anisohedral Tile for  ?" Amer. Math. Monthly 100, 585-588, 1993.
?" Amer. Math. Monthly 100, 585-588, 1993.
Berglund, J. "Anisohedral Tilings Page." http://www.angelfire.com/mn3/anisohedral/.Grünbaum, B. and Shephard, G. C. §9.4 in Tilings and Patterns. New York: W. H. Freeman, 1986.
Klee, V. and Wagon, S. Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.
Myers, J. "Polyomino Tiling." http://www.srcf.ucam.org/~jsm28/tiling/.Sloane, N. J. A. Sequence A075206 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  الرياضيات في العلوم الاخرى
					 الاكثر قراءة في  الرياضيات في العلوم الاخرى 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة