Blastocyst Formation 					
				 
				
					
						
						 المؤلف:  
						T.W. Sadler					
					
						
						 المصدر:  
						Langmans Medical Embryology					
					
						
						 الجزء والصفحة:  
						14th E, p43-44					
					
					
						
						2025-06-11
					
					
						
						373					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				About the time the morula enters the uterine cavity, fluid begins to penetrate through the zona pellucida into the intercellular spaces of the inner cell mass. Gradually, the intercellular spaces become confluent, and finally, a single cavity, the blastocele, forms (Fig. 1A,B). At this time, the embryo is a blastocyst. Cells of the inner cell mass, now called the embryoblast, are at one pole, and those of the outer cell mass, or trophoblast, flatten and form the epithelial wall of the blastocyst (Fig. 1A,B). The zona pellucida has disappeared, allowing implantation to begin. In the human, trophoblastic cells over the embryoblast pole begin to penetrate between the epithelial cells of the uterine mucosa on about the sixth day (Fig. 1C). New studies suggest that L—selectin on trophoblast cells and its carbohydrate receptors on the uterine epithelium mediate initial attachment of the blastocyst to the uterus. Selectins are carbohydrate-binding proteins involved in interactions between leukocytes and endothelial cells that allow leukocyte “capture” from flowing blood. A similar mechanism is now proposed for “capture” of the blastocyst from the uterine cavity by the uterine epithelium. Following capture by selectins, further attachment and invasion by the trophoblast involve integrins, expressed by the trophoblast and the extracellular matrix molecules laminin and fibronectin. Integrin receptors for laminin promote attachment, whereas those for fibronectin stimulate migration. These molecules also interact along signal transduction pathways to regulate trophoblast differentiation, so that implantation is the result of mutual trophoblastic and endometrial action. Hence, by the end of the first week of development, the human zygote has passed through the morula and blastocyst stages and has begun implantation in the uterine mucosa.

Fig1. A. Section of a lO7—cell human blastocyst showing inner cell mass and trophoblast cells. B. Schematic representation of a human blastocyst recovered from the uterine cavity at approximately 4.5 days. Blue, inner cell mass or embryoblast; green, trophoblast. C. Schematic representation of a blastocyst at the sixth day of development showing trophoblast cells at the embryonic pole of the blastocyst penetrating the uterine mucosa. The human blastocyst begins to penetrate the uterine mucosa by the sixth day of development.
				
				
					
					
					 الاكثر قراءة في  التشطر 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة