النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Regulation of Ribosome Synthesis
المؤلف:
Robert Schleif
المصدر:
Genetics and Molecular Biology
الجزء والصفحة:
2nd Edition , p214-216
2025-05-28
47
We already know that αr, during balanced exponential growth, is proportional to the growth rate. Let us consider the response of αr during a transition between growth rates. Originally this type of data was sought in an effort to place constraints on the possible feedback loops in the ribosome regulation system. By analogy to electronic circuits, the response of the ribosome regulation system could be highly informative. The most straightforward growth rate shift is generated by addition of nutrients supporting faster growth. The resulting response in αr is a quick increase to the αr characteristic of the new growth conditions (Fig. 1). Superimposed on this shift are small oscillations. The existence of these oscillations shows that a number of cellular components are involved in the regulatory system. The ten-minute period of the oscillations suggests that at least one of the regulating components is not a molecule like ATP that is completely turned over on a time scale appreciably less than ten minutes.
Fig1. The response of αr, to a growth rate increase.
In addition to regulating ribosome synthesis in response to differing growth rates, bacterial cells, and likely others as well, display a second type of ribosome regulation. This is the stringent response, in which the synthesis of ribosomal RNA and tRNA completely stops if protein synthesis stops. One obvious question about ribosome regulation is whether the stringent response itself is joined to the growth rate response system. Studies have shown that mutants in the stringent system, which are called relaxed, regulate their ribosome levels the same as wild-type cells as growth rate is varied. Consequently, these two systems are separate, as is verified by more recent experiments by Gourse.
The halt in the accumulation of rRNA in amino acid-starved, stringent cells appears to result from decreased initiations by RNA polymerase rather than from degradation of rRNA or blockage of elongation by RNA polymerase. This is not surprising in light of what we have already discussed about regulation of DNA synthesis. One demonstration of this fact is that no radioactive rRNA is synthesized if amino acids, rifamycin, and labeled uridine are simultaneously added to amino acid-starved, stringent cells. The same conclusion is also reached by observing the kinetics of synthesis of the 16S and 23S rRNAs immediately after restoring the missing amino acid to an amino acid-requiring strain.
During the stringent response, guanosine tetra- and pentaphosphate, ppGpp (Fig. 2) and pppGpp, accumulate in amino acid-starved, stringent cells but not in amino acid-starved, relaxed cells. These com pounds may directly interfere with transcription of the ribosomal RNA genes. In vitro experiments show that synthesis of ppGpp requires a particular protein, ribosomes, messenger, and an uncharged tRNA corresponding to the codon of messenger in the A site of a ribosome (Table 1). The required protein is normally rather tightly associated with the ribosomes and is the product of a gene called relA.
Fig2. The structure of ppGpp.
Table1. Conditions for Synthesis of ppGpp and pppGpp