تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Kähler Structure
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
8-7-2021
1985
A Kähler structure on a complex manifold combines a Riemannian metric on the underlying real manifold with the complex structure. Such a structure brings together geometry and complex analysis, and the main examples come from algebraic geometry. When
has
complex dimensions, then it has
real dimensions. A Kähler structure is related to the unitary group
, which embeds in
as the orthogonal matrices that preserve the almost complex structure (multiplication by '
'). In a coordinate chart, the complex structure of
defines a multiplication by
and the metric defines orthogonality for tangent vectors. On a Kähler manifold, these two notions (and their derivatives) are related.
The following are elements of a Kähler structure, with each condition sufficient for a Kähler structure to exist.
1. A Kähler metric. Near any point , there exists holomorphic coordinates
such that the metric has the form
![]() |
(1) |
where denotes the vector space tensor product; that is, it vanishes up to order two at
. Hence any geometric equation in
involving only the first derivatives can be defined on a Kähler manifold. Note that a generic metric can be written to vanish up to order two, but not necessarily in holomorphic coordinates, using a Gaussian coordinate system.
2. A Kähler form is a real closed nondegenerate two-form, i.e., a symplectic form, for which
for nonzero tangent vectors
. Moreover, it must also satisfy
, where
is the almost complex structure induced by multiplication by
. That is,
![]() |
(2) |
and
![]() |
(3) |
Locally, a Kähler form can be written as , where
is a function called a Kähler potential. The Kähler form is a real
-complex form.
3. A Hermitian metric where the real part is a Kähler metric, as in item (1) above, and where the imaginary part is a Kähler form, as in item (2).
4. A metric for which the almost complex structure is parallel. Since parallel transport is always an isometry, a Hermitian metric is well-defined by parallel transport along paths from a base point. The holonomy group is contained in the unitary group.
It is easy to see that a complex submanifold of a Kähler manifold inherits its Kähler structure, and so must also be Kähler. The main source of examples are projective algebraic varieties, complex submanifolds of complex projective space which are solutions to algebraic equations.
There are several deep consequences of the Kähler condition. For example, the Kähler identities, the Hodge decomposition of cohomology, and the Lefschetz theorem depends on the Kähler condition for compact manifolds.