Cohomology
المؤلف:
Rabson, D. A.; Huesman, J. F.; Fisher, B. N.
المصدر:
"Cohomology for Anyone." Found. Phys
الجزء والصفحة:
1769-1796
5-7-2021
1661
Cohomology
Cohomology is an invariant of a topological space, formally "dual" to homology, and so it detects "holes" in a space. Cohomology has more algebraic structure than homology, making it into a graded ring (with multiplication given by the so-called "cup product"), whereas homology is just a graded Abelian group invariant of a space.
A generalized homology or cohomology theory must satisfy all of the Eilenberg-Steenrod axioms with the exception of the dimension axiom.
REFERENCES:
Rabson, D. A.; Huesman, J. F.; Fisher, B. N. "Cohomology for Anyone." Found. Phys. 33, 1769-1796, 2003.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة