1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Hermite-Lindemann Theorem

المؤلف:  Dörrie, H.

المصدر:  "The Hermite-Lindemann Transcendence Theorem." §26 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover

الجزء والصفحة:  ...

1-2-2021

1188

Hermite-Lindemann Theorem

Let alpha_i and A_i be algebraic numbers such that the A_is differ from zero and the alpha_is differ from each other. Then the expression

 A_1e^(alpha_1)+A_2e^(alpha_2)+A_3e^(alpha_3)+...

cannot equal zero. The theorem was proved by Hermite (1873) in the special case of the A_is and alpha_is rational integers, and subsequently proved for algebraic numbers by Lindemann in 1882 (Lindemann 1888). The proof was subsequently simplified by Weierstrass (1885) and Gordan (1893).


REFERENCES:

Dörrie, H. "The Hermite-Lindemann Transcendence Theorem." §26 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 128-137, 1965.

Hermite, C. "Sur la fonction exponentielle." Comptes Rendus Acad. Sci. Paris 77, 18-24, 1873.

Gordan, P. "Transcendenz von e und pi." Math. Ann. 43, 222-224, 1893.

Lindemann, F. "Über die Ludolph'sche Zahl." Sitzungber. Königl. Preuss. Akad. Wissensch. zu Berlin No. 2, pp. 679-682, 1888.

Weber, H. Lehrbuch der Algebra, Vols. I-II. New York: Chelsea, 1902.

Weierstrass, K. "Zu Hrn. Lindemann's Abhandlung: 'Über die Ludolph'sche Zahl.' " Sitzungber. Königl. Preuss. Akad. Wissensch. zu Berlin No. 2, pp. 1067-1086, 1885.

EN

تصفح الموقع بالشكل العمودي